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ABSTRACT

Many libraries in the HPC field encapsulate sophisticated
algorithms with clear theoretical scalability expectations.
However, hardware constraints or programming bugs may
sometimes render these expectations inaccurate or even pla-
inly wrong. While algorithm engineers have already been
advocating the systematic combination of analytical perfor-
mance models with practical measurements for a very long
time, we go one step further and show how this compari-
son can become part of automated testing procedures. The
most important applications of our method include initial
validation, regression testing, and benchmarking to com-
pare implementation and platform alternatives. Advancing
the concept of performance assertions, we verify asymptotic
scaling trends rather than precise analytical expressions, re-
lieving the developer from the burden of having to specify
and maintain very fine-grained and potentially non-portable
expectations. In this way, scalability validation can be con-
tinuously applied throughout the whole development cycle
with very little effort. Using MPI as an example, we show
how our method can help uncover non-obvious limitations
of both libraries and underlying platforms.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
testing tools; D.4.8 [Performance]: Modeling and predic-
tion; C.4 [Performance of Systems]: Modeling techniques;
D.1.3 [Concurrent Programming]: Parallel programming
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1. INTRODUCTION

The most powerful supercomputers today allow computa-
tions to be run on millions of cores and in the not-so-distant
future this number may grow to tens of millions and billions
of cores. Since many applications critically depend on paral-
lel libraries such as MPI, PETSc, ScaLAPACK and HDF5,
the scalability of these libraries is of utmost importance for
reaching performance targets at scale. This becomes even
clearer considering that application developers may be able
to remove performance bottlenecks from their own code, but
may encounter more challenges removing these bottlenecks
in the libraries they are using.

Library developers, on the other hand, are confronted with
the challenge of continuous scalability validation as their
code base evolves. In the past, they often did this by scaling
the library to the full extent of the largest machine available
to them, after which they manually compared the results
with theoretical expectations. This is expensive in terms
of both machine time and manpower. In cases where the
library encapsulates complex algorithms that are the prod-
uct of years of research, such expectations often exist in the
form of analytical performance models [7,19,22]. However,
translating such abstract models into concrete verifiable ex-
pressions is hard because it requires knowing all constants
and restricts function domains to performance metrics that
are effectively measurable on the target system. If only the
asymptotic complexity is known, as is very commonly the
case, this is in fact impossible. And if such a verifiable
expression exists, it must be adapted every time the test
platform is replaced and performance metrics and constants
change.

To mitigate this situation, we combine automated perfor-
mance modeling with performance expectations in a novel
scalability test framework. Similar to performance asser-
tions [21], our framework supports the user in the specifi-
cation and validation of performance expectations. How-
ever, rather than formulating precise analytical expressions
involving measurable metrics, the user need only provide
the asymptotic growth rate of the function/metric pair in
question, making this a simple but effective solution for fu-
ture exascale library development. We generate performance
models similar to Calotoiu et al. [6]. However, instead of
creating scaling models independently from the expected
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Figure 1: Framework overview including use cases.

behavior as they do, we tailor the model search spaces to
expectations and also generate divergence models that help
in understanding how the difference between expected and
actual behavior would evolve as the number of processes in-
creases. Moreover, in the absence of a clear expectation, the
framework is able to supply the status quo as a substitute.
This is especially useful during regression testing when the
main task is to prevent later modifications from reducing
scalability. A performance model generator combined with
an automated workflow manager makes sure that the actual
and expected behavior can be continuously compared.

Use cases of our framework include initial validation, re-
gression testing, and benchmarking to compare implementa-
tion and platform alternatives. Although our work is not re-
stricted to a specific type of software, we focus on library de-
velopment because of its high impact and the greater avail-
ability of theoretical performance models. In comparison to
the state of the art, we make the following specific contribu-
tions:

e Scalability validation based on simple asymptotic gro-
wth rates, which are often easier to obtain than fully
evaluable analytical expressions

e Generation of divergence models to characterize devi-
ation as a function of the number of processes

e Targeted model search through expectation-driven con-
struction of the search space

e Automatic workflow including execution of performance
experiments and generation of performance models

e Testing whether the scaling behavior of the library is
consistent across different functions

In the first case study involving several MPI implementa-
tions, we demonstrate how our framework can be applied
to (i) uncover growing memory consumption, (ii) reveal ar-
chitectural constraints that limit the performance of a wide
range of collective operations, and (iii) predict the violation
of MPI performance guidelines. In the second case study in-
volving the MAFIA (Merging of Adaptive Finite IntervAls)

code [3], we demonstrate that our approach is also applica-
ble to algorithmic modeling. In this case, the model is a
function of algorithm parameters.

The remainder of the paper is organized as follows: in
Section 2, we provide an overview of our approach. Sec-
tion 3 outlines how the framework must be instantiated for
the MPI example and Section 4 then shows the experimen-
tal results. Since the MAFIA study relies largely on the
same infrastructure, we chose to present it in the same sec-
tion immediately after the MPI study. Finally, we review
related work in Section 5, before drawing our conclusions in
Section 6.

2. APPROACH

The objective of our approach, which is illustrated in Fig-
ure 1, is to provide insights into the scaling behavior of a
library with as little effort as possible. It includes the follow-
ing four steps: (i) define expectations; (ii) design benchmark;
(iii) generate scaling models; (iv) validate expectations. The
first two are manual because they involve user decisions,
while the second two are automatic. We describe each of
them in detail below.

2.1 Define Expectations

We aim to keep our method simple and effective: it has
to be usable in various settings with only an approximate
idea of the expected result. For example, it is very unlikely
that a programmer of a matrix-matrix multiplication can tell
the floating-point rate or the achieved memory bandwidth
for a given matrix size N. Thus, these metrics may be less
useful in practice. However, every programmer will know
whether he used the simple O(N?) algorithm or Strassen’s
O(N?*807) algorithm. Therefore, we let the user define ex-
pectations in big O notation (aka Landau notation). For
some functions, one could even formulate a black-box hy-
pothesis. A library call sort(int *array, int N), for ex-
ample, that sorts an integer array should perform the sorting
in O(N log N) rather than in O(N?) steps.

In our expectation-centric performance modeling approach
we assume that the user is a domain expert capable of pro-
viding initial expectations. However, before being able to
define expectations, a user has to choose the library func-
tions that will be subjected to the scaling analysis and the
relevant scaling metrics. The more functions a user selects
the more expensive it will become to construct the bench-
mark, which is why it can make sense to restrict the selection
to those deemed most relevant. On the other hand, mak-
ing too narrow a choice poses the risk of overlooking hidden
scalability issues. Another important decision concerns the
selection of scaling metrics. For some rarely called functions,
memory consumption might be the primary concern, but for
many others it will probably be runtime or floating-point
operations. Very often, countable metrics such as floating-
point operations yield better empirical scaling models be-
cause they are less prone to jitter. If only a hypothetical
expectation is available, the model generator can use it to
generate a model which better describes the current behav-
ior. This model can then become the new expectation. This
is especially useful when the user has little knowledge of the
library or during regression testing when the main task is
to prevent later modifications from introducing scalability
bugs.



Sometimes, the functionality offered by one library func-
tion is a subset or a superset of the functionality offered by
another library function. Or a library API may offer con-
venience functions with functionality that can be regarded
as a short cut for a combination of other API functions. In
such cases, it is possible to define optional cross-function
rules that specify relationships between the scaling behavior
of different functions. For example, a short cut should not
scale worse than the spelled-out implementation.

2.2 Design Benchmark

The benchmark must provide or generate valid library in-
puts and measure the selected performance metrics for the
selected functions in various execution configurations (e.g.,
different numbers of processes or input sizes).

Occasionally, unexpected architectural constraints such as
the network topology may increase the observable complex-
ity of an implementation — without such factors, the software
could be blamed in the sense of a performance bug that re-
quires a fix. To help distinguish such effects from program-
ming bugs, it is advisable to manually re-implement one or
more representative library functions in a way that has been
proven to show the expected behavior under ideal conditions
- for example, using a known optimal algorithm from the
literature. The difference between this performance litmus
test and the original library functions is that the tester can
usually trust the replica more than the original function be-
cause he thoroughly knows its internals. Should the original
library function now show performance deviations, they can
be compared with the results obtained for the litmus test.
A similar deviation observed for the replica could then be
seen as a strong indicator of architectural constraints that
might also influence the behavior of other regular library
functions. We discuss an example as part of our first case
study in Section 3.2.

2.3 Generate Scaling Models

Our expectation-centric performance modeling approach
assumes that the user provides an initial expectation func-
tion E(x). Together with this expectation the user either
provides a deviation limit D(z) or a default deviation is
chosen automatically. Looking at how most computer algo-
rithms are designed and their complexity, we can identify a
number of function classes with distinct rates of growth.

Fi(z) = {log;1 :c}
Fry(z) = {x”}
Fs(z) = {zm}

This division into classes provides the foundation of our
performance-modeling technique; however, we do not claim
that the above classes are exhaustive, and new ones can
be added on demand to reflect changes in algorithms and
applications. The basic modeling technique will nevertheless
be the same. We first classify the leading-order term of the
expectation E(z) according to our scheme. Since we assume
that E(z) is sound and our goal is to validate it, we are not
interested in a wide deviation limit. Therefore, if the user
provides no such limit we choose a default deviation D(x)
from the same class. In other words, if E(x) was classified as
belonging to F)(z) we define D(z) by halving the leading-
order term exponent i of E(x). The lower deviation limit is

then defined as D;(z) = E(x)/D(x), and the upper deviation
limit is defined as D, (z) = E(z) - D(z). By default, the
model search space boundaries extend beyond the deviation
limits D;(z) and Dy (), thus the lower boundary is defined
as Bi(x) = 1 and the upper boundary as B,(z) = E?*(z).
These boundaries limit the growth of generated performance
models. The deviation limits D;(z) and Dy (z), on the other
hand, define our bug criteria; if a model falls outside these
limits, we classify this as a scalability bug.

The next step is to choose the functions inside the model
search space, and thus define its resolution. The user can
provide his own search space or let it be generated auto-
matically using the expectation E(z). The construction of
the search space is analogous to placing ticks on a ruler.
The bigger ticks (e.g., centimeters) are the terms from class
Fy(z) to which E(z) belongs. The outermost ticks are by
default B; and B,; while the inner ticks are constructed
by recursively halving the intervals between existing ticks.
Each new tick corresponds to a new term and is added to the
search space. Practically, this is achieved by averaging the
exponents of adjacent terms that are already in the search
space. We denote the set of exponents of the terms already
in the search space as I, € Q, which means we can define the
search space up to this point as {f(z) € Fix(z)|ir € Ix}. By
introducing smaller ticks (e.g., millimeters), we can increase
the resolution even further. In contrast to the bigger ticks,
smaller ticks are constructed by multiplying the terms from
class Fj(x) that are already elements of the search space
with terms from Fj_1(z). As a rule of thumb and a default
choice, the first term we select from Fj_1 (z) has an exponent
of 1. We can then expand this selection as needed by incre-
menting and decrementing the exponent by a step of 1, 1/2,
1/3, and so on. Selecting more terms from Fy_1 (ac) increases
the search space resolution which incurs more overhead and
is not always needed. We do not consider any terms from a
class lower than Fj,_1(z) because the ticks this would create
are too fine-grained to characterize significant deviations.
Finally, we multiply each term in the search space with a
coefficient placeholder that will be instantiated when fitting
the functions in the search space to actual measurements.

We offer both simplicity and flexibility to the user. The
only input that the user has to provide is the expectation.
The deviation limit and the search space can then be gener-
ated automatically, thus relieving the user of the complexity
of too many choices. However, if more flexibility is required,
the user has the option of providing the deviation limit and
modifying the search space. It means either refining the res-
olution by placing further exponents in gaps between exist-
ing terms or expanding the space beyond the default bound-
aries of B; and B,. However, there is a trade-off between
accuracy and speed; therefore, applying these modifications
will increase the model-generation time. As an approximate
point of orientation, the entire modeling process in our case
studies never took more than a few seconds per library.

As an example, let us consider the expectation E(p) = p.
In this case, the default deviation limit is D(p) = ,/p since
it is exactly half of the power of p. The default lower and
upper search space boundaries are respectively 1 and p?.
By averaging the exponents of adjacent terms in our search
space we first construct the models /p and p,/p, and in
the next step we add {p’ |j = i, %, %, %} We then select a
term with exponent 1 from the next lower class, log p in this
case, and multiply it by the terms that are already inside the



search space. Note that we skip the upper boundary p? in
order to keep the search space within our defined boundaries:

1 1 T
{1, logp, p*,p* logp, /D, ---, P, Plogp, ..., p* logp, p2}

The model generator now needs a set of measurements as
input whose precise nature depends on the scaling objective
(e.g., number of processes vs. input size, weak vs. strong).
As a rule of thumb derived from our experience, the gener-
ator needs at least five different settings of the model pa-
rameter (e.g., five different numbers of processes). It then
starts searching the search space for the model that best fits
the measurements and uses the adjusted coefficient of de-
termination as an accuracy metric. The adjusted coefficient
of determination is a standard statistical fit factor € [0, 1],
with 1 indicating optimal fit.

2.4 Validate Expectations

Since we accept expectations in big O notation, we first
need to transform the generated models accordingly. This
involves isolating the leading-order term in a model and
stripping off its coefficient.

Unfortunately, run-to-run variation, which affects almost
any system, may introduce a certain degree of noise into the
measurement data. This means that we are confronted with
a trade-off decision. On the one hand, if we increase the
search space resolution, we have to accept that the model
would not only reflect the behavior we are interested in but
potentially also the noise. On the other hand, if we restrict
the resolution too much, we have to accept models that do
not fit the data precisely, increasing the likelihood that they
will misguide the user. Since according to our experience the
latter option is more dangerous, we decided to allow more
fine-grained model choices.

To assist the user in understanding the results we define
the divergence model to be 6(z) = G(z)/E(x), where G(z) is
the generated model and E(z) is the expectation provided by
the user. This model characterizes the degree of divergence
between the expectation and the observed behavior. It can
also be used to visualize the severity of the deviation. Thus,
the output we present to the user consists of G(z), 6(z), and
a match rank with three possible indications: total match
(meaning G(z) corresponds to E(x)), approximate match
(G(x) is within the deviation limits), and no match (G(z) is
outside the deviation limits).

Severe divergence can either point to a bug in the algo-
rithm, a bug in its implementation, a constraint of the un-
derlying architecture, an unrealistic expectation, or a com-
bination of several factors. The root cause is not always
obvious. For example, even if the implementation seems
correct at the first glance, it is always possible that bugs
such as false sharing, unnecessary synchronization, or poor
communication schedules increase the actual complexity of
the implementation. Nonetheless, the performance litmus
test introduced earlier can help separate architectural from
implementation constraints. Based on the generated models,
we can now also verify the compliance of the actual behav-
ior with the optional cross-function rules. For this purpose,
we combine the models involved in such rules before trans-
forming them into their asymptotic form. Finally, if the
generated models fall within the deviation limit (i.e. match
the expectations either exactly or approximately) the user
may instantiate them to predict the scaling limits of selected
library functions at specific target scales.

3. CASE STUDY: MPI

MPT is a fundamental building block in most HPC applica-
tions, and previous work identified the runtime of collective
operations and memory consumption as two potential scal-
ability obstacles [4]. This makes MPI an ideal case study
for testing our approach. We now present the instantiation
of each step in our test framework. The benchmark design
is discussed in more detail as it is important to understand
how we benchmark and measure our target functions and
metrics. This case study can be used as a guideline for ap-
plying the test framework to other libraries.

3.1 Expectations

We chose to focus on the most common MPI collective
functions and latency-oriented runtimes (message sizes in
the order of hundreds of bytes). Specifically, we looked at:
Barrier, Bcast, Reduce, Allreduce, Gather, Allgather, and
Alltoall. By focusing on latency, we limit ourselves to only
one aspect of performance. It is sufficient for the initial
study, but the message size is a changeable parameter and
the study could be extended to include bandwidth as well.
We also focus on the memory requirements of communica-
tors, and measure the memory overhead of the Comm._create,
Comm_dup, Win_create, and Cart_create functions. Lastly,
we also chose to analyze the MPI memory consumption by
estimating the process memory allocated during the bench-
mark execution.

The expectations for the runtime of collective operations
in our MPI case study come from either the analysis of Chan
et al. [7] or MPICH [19]. These particular cost models incor-
porate years of research and optimizations that make them
a good reference for comparison. They are configurable,
and can be changed as needed to reflect more specialized
requirements. Table 2 presents these expectations for each
collective operation. Many implementations of MPI collec-
tive functions (including MPICH) use different algorithms
depending on the message size and the number of processes.
Since we use a small message and numbers of processes equal
to a power of two, we selected the expected models such that
they reflect this setup. The expectations for communicator
memory overheads are taken from the analysis by Balaji et
al. [4]. The memory overhead of communicator creation,
either from a group or for a new Cartesian topology, is ex-
pected to be linear in its number of processes. Communi-
cator duplication, on the other hand, requires only constant
overhead and is therefore expected to remain constant as the
number of processes grows. The creation of an RMA window
(MPI_Win_create) is expected to be linear in the number of
processes. In general, a scalable MPI library should con-
sume a fixed amount of memory, independent of the number
of processes [4]. Some libraries, however, require translation
tables for ranks in MPI_.COMM_WORLD to network ranks
(e.g., IP addresses). However, this is suboptimal and should
not consume more than a few bytes per MPI process in order
to support highly scalable systems.

MPI performance guidelines specify internal performance
consistency rules between MPI functions [20]. These rules
define consistency expectations, and we specifically evaluate
two guidelines: Allreduce < Reduce + Bcast and Allgather
< Gather + Bcast. These define the cross-function rules
that we focus on. The first guideline states that, since se-
mantically it is the same operation, it is reasonable to expect
from a correct and optimized MPI implementation that the



execution time of MPI_Allreduce is not greater than the exe-
cution time of a combination of MPI_Reduce and MPI_Bcast.
The same logic is also applied to the second guideline.

3.2 Benchmark Design

Although the benchmark we designed focuses on MPI, the
general structure and principles can be adapted in other
libraries as well. It consists of a series of smaller micro-
benchmarks which evaluate different collective functions, ei-
ther in terms of execution time or memory consumption.
Each one produces results that are later used as input to
the model generation phase of the framework. To obtain
timings for collectives, we adopted the approach by Hoe-
fler et al. [10], which first lets all processes start a collective
operation at the same time, and then takes the maximum
runtime across all processes. According to this method, we
first calculate clock differences relative to the first process,
and then set a time window relative to this process in which
every process should start the operation.

A micro-benchmark starts with a number of warm-up runs
and continues to execute the collective function R times.
We measure the memory overhead by wrapping malloc and
free and, for operations that create a new communicator,
it gives us exactly the memory overhead of the new com-
municator. The results of each repetition (both the runtime
and the memory overhead) are reduced to a maximum value
across all processes. To strike a balance between the number
of repetitions and the total runtime of the benchmark, we
empirically chose R = 400 for all the machines we used.

The memory allocated to a process on Linux and Unix-like
systems is measured by analyzing the mapped memory re-
gions in a /proc/self/smaps file. We count either the shared
and the private regions, or the proportional set size (PSS)
of the process. On Blue Gene/Q the compute nodes run a
special minimal version of the Linux kernel (CNK) that pre-
allocates the memory for the process in advance and does not
provide the actual status of the memory in /proc/self/maps.
As an alternative, we use the Kernel_GetMemorySize func-
tion to obtain the desired value. To isolate the part which is
used by MPI we first measure the allocated memory before
MPI is initialized, and then subtract it from the measure-
ment after all MPI functions have been executed and all
user-created MPI data objects been freed, but before MPI
is finalized. The additional memory for buffers and vari-
ables that were allocated by the micro-benchmarks is also
subtracted from the estimate.

To help identify architectural constraints, or negative ef-
fects of neighbor network activity, we calibrate the bench-
mark by running a manually implemented binary-tree broad-
cast [7] as our performance litmus test. It is implemented
using point-to-point MPI functions and we understand the
precise behavior of this implementation under ideal condi-
tions. If its generated performance model does not corre-
spond to the expected analytical model, it suggests that
other factors, e.g., network contention or neighbor activ-
ity are influencing the runtime. After this calibration, we
can attribute unexpected behavior with greater confidence
to either problematic implementations or to machine-related
overheads.

The benchmark runs are orchestrated by the Jiilich Bench-
marking Environment (JuBE) [1], which allows the user to
configure a wide choice of execution parameters and specify
ranges for some of them. For example, the user specifies the

Table 1: Machine specifications (cores and memory size are
given per node).

Juqueen Juropa Piz Daint
Platform Blue Gene/Q Intel, IB Cray-XC30
Topology 5D torus Fat tree Dragonfly
Nodes 28,672 3,288 5,272
CPU PPC A2 Xeon X5570 Xeon E5-2670
Clock 1.6 GHz 2.93 GHz 2.6 GHz
Cores 16 8 8
Memory 16 GB 24GB 32GB
MPI PAMI  ParaStation Cray

number of processes per node and a range for the requested
nodes. JuBE then iterates over these ranges independently
and creates a batch job for each combination.

3.3 Generation of Scaling Models

The inputs of the model generation phase are runtimes of
collective functions, communicator memory overheads, and
the estimate of the memory allocated by MPI, measured for
an increasing number of processes. Many benchmarks re-
duce the results of multiple iterations to a single value by
using an average. In our case, however, to mitigate sig-
nificant noise we use the first quartile. By choosing this
approach, we shift our focus from the average case toward
the best case and reduce the risk of false positives that can
occur when the levels of noise are very high. In any case,
the divergence model in the average case is as big as in the
best case.

As depicted in Tables 2 and 3, there were four different
expectations in this case study: O(1), O(logp), O(p), and
O(plogp). The first two were classified as belonging to the
class F1(z), and the other two as belonging to F»>(z). Note
that O(1) is a special case; it can be assigned to any one
of the classes by choosing the exponent of 0. The default
choice, therefore, is to classify it as belonging to Fi(x), thus
also expanding the default search space boundaries. For
more consistency, we decided to refine the largest default
search space we had, which was the search space of expec-
tation O(plogp). In other words, the search space in all the
cases was defined by logarithms with powers of 0 and 1, and
powers of 0, %7 % and all their multiples up to 2 for p. We
also used the same deviation of /p for all the expectations.

3.4 Validation of Expectations

In this step, we automatically validate the generated per-
formance models against our expectations. We compute the
divergence models and evaluate the cross-function consis-
tency expectations. The final output is a list of generated
models, in which each model has an adjusted coefficient
of determination, a divergence model, and a match indi-
cator. Table 2 is an example of such a list. The divergence
model and the match indicator were already discussed in
Section 2.4.

4. EVALUATION

In this section, we analyze the results of our experiments.
We used three different machines and MPI implementations,
and, as already explained, measured the runtime of collec-



tive functions, the memory overhead of communicators, and
the memory allocated by the process during the benchmark
execution. We first present the machines and the experi-
mental setup and then discuss the results.

4.1 Experimental Setup

Table 1 presents the specifications of the three machines
on which we conducted our experiments and tested our ap-
proach. Juqueen is a Blue Gene/Q machine built by IBM
and it is the capability supercomputer at Forschungszentrum
Jiilich (FZJ). It is specifically designed for highly scalable
codes and features improved energy efficiency. The special-
ized CNK kernel on the compute nodes reduces jitter and
allows for reproducible measurements. Juropa, on the other

Table 2: Generated (empirical) runtime models of collective
functions on Juqueen, Juropa, and Piz Daint alongside their
theoretical expectations.

Juqueen Juropa Piz Daint
Barrier Expectation: O(logp)
Model ~ O(logp)  O(p"“"logp) o(p”*)
R? 0.99 0.99 0.99
3(p) o(1) o™ O(®™*/logp)
Match v X o~
Bcast Expectation: O(logp)
Model  O(logp) o(p™®) o(p™°)
R? 0.86 0.98 0.94
3(p) o)  O@**/logp)  O@*°/logp)
Match N r ~
Reduce Expectation: O(logp)
Model ~ O(logp) — O(p*°logp)  O(p"’logp)
R? 0.93 0.99 0.94
3(p) o(1) O(p*?) O(p°?)
Match v x ~
Allreduce Expectation: O(logp)
Model  O(logp) O@p”>®)  O(P™* logp)
R? 0.87 0.99 0.99
5(p) o(1)  O(p™°/logp) o™
Match v e~ x A\
Gather Expectation: O(p)
Model O(p) O(p) O(p)
R? 0.99 0.99 0.99
6(p) o) o) o)
Match v v v
Allgather Expectation: O(p)
Model O(p) O(p) o(p"*)
R? 0.99 0.98 0.99
(p) o) o) o(p**)
Match v v ~
Alltoall Expectation: O(plogp)
Model O(p) o@p"*) o@p"*)
R? 0.99 0.99 0.99
5(p)  O(1/logp) O(p®**/logp) O(p°**/logp)
Match x r ~r
Bcast (BT) Expectation: O(logp)
Model ~ O(logp)  O(p"* logp) O(plogp)
R? 0.99 0.99 0.99
3(p) o(1) O(p"*) O(p)
Match v X X

hand, is the capacity machine at FZJ and is based on an
Intel architecture. Piz Daint, an x86-based Cray-XC30 ma-
chine at the Swiss National Supercomputing Centre (CSCS),
was built by Cray, and therefore has both a different net-
work topology and a different MPI implementation. We
believe the differences between these machines make them
good choices for our case study and allow us to evaluate the
scalability of different MPI implementations.

The MPI implementation on Juqueen is based on the
PAMI interface [13] and uses special hardware components
to accelerate collective functions [8]. Users have a choice of
various protocols for some of the frequently used collective
functions, e.g., binary-tree or binomial for MPI_Allreduce.
They also have the option to revert to the plain MPICH im-
plementation from which the Blue Gene version was derived.
For some numbers of processes and message sizes, the spe-
cial hardware components have no tangible benefits; in these
cases, the implementation might revert automatically to the
original MPICH algorithm. Juqueen provides an extension
of MPI that makes it possible to query which algorithm was
actually used during the execution of the collective function.
Piz Daint is a Cray machine and uses Cray MPI, which is
a vendor implementation of MPI and is quite closely cou-
pled to the machine itself. In these cases, support for non-
native implementations, such as Open MPI, is quite limited.
Therefore, we chose to focus our study on supported imple-
mentations, that is, PAMI on Juqueen, ParaStation MPI on
Juropa, and CrayMPI on Piz Daint. We chose to set the
number of MPI processes per node to be the same as the
number of cores in the node. The reason is that oversub-
scribing, namely running more processes than the number
of cores, can cause network contention at the node level.
On the other hand, undersubscribing, namely having fewer
processes, can potentially cause insufficient utilization of the
node’s computational resources and means that the applica-
tion would need to have more threads.

All three machines in our experiments provide highly ac-
curate, high-resolution hardware timers in the form of reg-
isters that can be read very quickly with an atomic instruc-
tion: MFTB on PowerPC, and RDTSC on x86. They allow
individual runtimes to be measured instead of executing a
function N times in a loop, measuring the total runtime,
and then dividing it by N to get an average. The latter
approach suffers from pipeline effects and tends to under-
estimate the latency [10]. As mentioned before, each run
of the benchmark performs R iterations. In order to cap-
ture performance fluctuations due to topology and network
noise, we repeated the runs 10 times. Each run was sub-
mitted separately to the batch system and thus was given a
different node allocation. We note that the experiments on
Piz Daint were performed with default Cray MPI library op-
timizations. The newer version of Cray MPI has additional
algorithms that may improve scaling, and can be used by
setting appropriate environment variables.

4.2 Result Analysis

In this subsection, we present the results of our analy-
sis. Tables 2 and 3 present the models as formulae next to
our expectations. Table 2 refers to runtime and Table 3 to
memory metrics. Since the size of the memory growth coef-
ficients may be significant, we show full models of memory
overheads and estimated memory consumption by MPI. The
R? row lists the adjusted coefficient of determination, which



indicates how well the data fits a statistical model. It is used
in the model generation phase to create models that fit the
data better [6]. Note that R? is not applicable to constant
models. Then follows the § row with the divergence models
as defined in Section 2.4. Finally, the match row specifies
whether the generated model meets our expectations. If the
two are in agreement, a checkmark v* is shown. If the match
is approximate according to the definition in Section 2.4, a
~ is shown. A solid x represents an unquestionable mis-
match. A warning sign A indicates the violation of a per-
formance guideline. Figure 2 presents the runtime models
for the collective functions we benchmarked plus the estima-
tion of memory consumption as graphs. The circles, squares,
and triangles depict the actual measurements, whereas the
lines are the predictions. Each curve is annotated with the
corresponding model which sits on top of the curve. Since
we focus on the scalability behavior of the models, we chose
not to show the constant terms. The discussion below starts
with Juqueen, on which almost all the generated models cor-
respond almost fully to expectations. We then continue to
Juropa and Piz Daint, on which the results differed from our
expectations to some degree.

Juqueen

On Juqueen, the performance of collective functions was
generally better than on the other machines and we found
that almost all of our expectations were met. All the mod-
els on Juqueen are either logarithmic or linear with respect
to the number of processes p. As can be seen in Table 2,
all the generated models on Juqueen correspond exactly to
the expected models with the exception of MPI_Alltoall,
which is identified as linear when, in fact, the expectation
would be O(plogp). The difference between reality and ex-
pectation is small enough to be explained by noise and other
system effects. The manually implemented binary-tree (BT)
version of the broadcast is shown at the bottom of Table 2.
The expected cost of this algorithm for small messages is:
(a + B) log p; and though it is slower in absolute terms than
the native MPI_Bcast, the generated model is still logarith-
mic. It serves as a strong indicator that other factors have
minimal influence on the runtime. Table 3 presents the mod-
els for the communicator memory overheads and the esti-
mated fraction of the memory allocated by the process that
is consumed by MPI. Although the generated models on
Juqueen correspond to the expectations, the linear growth
of some of the communicator constructors can still become
an issue at very large scale.

Juropa and Piz Daint

On Juropa and Piz Daint, the predicted performance mod-
els of some collective functions did not fully match their ex-
pectations. These discrepancies between predicted and ex-
pected behavior suggest potential scalability issues. Almost
all the generated models, including the ones for MPI_Barrier,
MPI_Bcast, and MPI_Reduce, did not correspond to the ex-
pected logarithmic models. It is important to note that
MPI_Barrier can have both logarithmic and linear imple-
mentations [15]. However, since the optimized MPICH im-
plementation is logarithmic [19], we expect it to behave log-
arithmically on Juropa as well. The generated model of the
binary-tree (BT) broadcast falls outside the deviation limits
and clearly fails to match the expected logarithmic model.
Since we have a clear understanding of this algorithm and

Table 3: Generated (empirical) runtime models of memory
overhead on Juqueen, Juropa, and Piz Daint alongside their
theoretical expectations.

Juqueen Juropa Piz Daint

MPI memory [MB] Expectation: O(logp)

Model 10.7-10"-logp 16 +0.56-p 46 + 1.35-logp
R? 0.72 1 0.23
(p) O(1)  O(p/logp) o(1)
Match N X v

Comm _create [B] Expectation: O(p)

Model 2.2-10° +24-p 264+28-p 3770+ 46 -p
R? 1 1 0.99
5(p) o(1) o(1) o(1)
Match v v v
Comm _dup [B] Expectation: O(1)
Model 2.2-10° 256 3770+ 18- p
R? - - 0.99
5(p) o(1) o) o)
Match v v X
Win_create [B] Expectation: O(p)
Model 96-p 256+60-p 3287+ 118 -p
R? 1 1 0.99
(p) o) o(1) o)
Match v v v
Cart_create [B] Expectation: O(p)
Model 2.2-10° +52-p 356+24-p 2545+ 63-p
R? 0.99 1 0.99
5(p) o(1) o(1) o(1)
Match v v v

its complexity, we can point to a number of external factors
as potential causes of this discrepancy:

1. The network model which was used to calculate the
expected cost of the binary-tree broadcast algorithm
is simpler than the IB fat-tree interconnect on Juropa.

2. On some machines, the performance of communication-
heavy applications strongly depends on the node al-
location they receive and the neighborhood of each
node [5]. An application which runs on a neighbor
node and produces heavy network load creates more
perturbation for our benchmark.

3. Network hardware and topology can influence the run-
time of various collective functions and make them
slower than expected [11,12].

The above factors can also offer an explanation for the dis-
crepancies between the generated models and the expecta-
tions on Piz Daint. The performance models of MPI_Gather
on both Juropa and Piz Daint, as well as the MPI_Allgather
model on Juropa, are linear as expected. On Piz Daint, how-
ever, the performance model of the latter does not match
the expectation but still falls within the deviation limits. In
Table 2, the warning sign under Match signals that a per-
formance guideline violation was detected. As discussed in
Section 3.4, the automatic validation evaluates two perfor-
mance guidelines, one for Allreduce and one for Allgather.
Although the actual measurements on Piz Daint do not vi-
olate the Allreduce guideline, the generated models predict
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Figure 2: Measurements (circles, squares, triangles) and generated runtime models (plot lines) on Juqueen, Juropa, and Piz

Daint.

that the guideline would be violated at larger scales. How-
ever, whether this is indeed the case must be verified in
future experiments.

The communicator memory overheads on Juropa and Piz
Daint are presented in Table 3. On Juropa, the generated
models correspond to expectations, and it is interesting to
note that the initial overheads (the constants) are very small.
This is in direct contrast to Juqueen, on which these con-
stants are much higher. The model for communicator du-
plication on Piz Daint is linear, although it is expected to
be constant. The development team at Cray confirmed that
the implementation of MPI_Comm_dup is taken from MPICH
3.1.2, and that the MPICH version behaves in the same
manner. This result clearly shows that there might be a
scalability bug in this function; further study is required to
find ways to fix it.

Figure 2i presents the models for the estimated fraction of
the process memory that is consumed by MPI on all three
machines. In the case of Juropa, the generated model reveals
a severe scalability problem. Even with smaller values of p, it
is non-scalable. Starting with 1024 nodes, it is impossible to
have 8 MPI processes per node since all the processes would
require 35 GB in total and the node’s memory is just 24 GB.
Our experiments confirmed this memory wall: memory al-
location failed when the total number of processes was 8192
(with 8 processes per node). Our findings are confirmed by
the documentation; the reason for the linear increase in allo-
cated memory is that ParaStation MPI uses by default the
Reliable Connected (RC) InfiniBand service, which needs
0.55MB of memory for each MPI connection [2]. When
using MPI_Alltoall each process will allocate 0.55p MB of
memory, which is exactly the linear behavior we discovered
through our experiments.



Table 4: Generated (empirical) runtime models of MAFTA
functions alongside their theoretical expectations.

gen dedup pcount unjoin
Expectation O(k*2F)  O(k*2%) O(k2%) O(k32")
Model O(k*2F)  O(k*2%) O(k2")  Ok*2F)
o(k) O(k) O(1) O(1) O(1/k
Match A v v ~
4.3 MAFIA

No matter how large the degree of parallelism, optimizing
sequential code is still essential to achieve good performance.
The subject of our second case is therefore MAFIA (Merg-
ing of Adaptive Finite IntervAls), a sequential data-mining
program utilizing a collection of key routines. One of the
basic problems in data mining is identifying regions of sim-
ilarity in a multi-dimensional data set. Many applications,
however, exhibit a high degree of dimensionality in the data,
which makes traditional approaches of all-attribute cluster-
ing problematic. A possible solution is to use subspace clus-
tering methods to identify clusters in a subset of dimensions.
MAFIA is one example of such a method. It is a serial algo-
rithm for subspace clustering based on adaptive grid meth-
ods [3]. The cluster dimensionality k is a critical parameter
in this algorithm since the ultimate goal is to identify clus-
ters across all dimensions. Users of MAFIA will start with
a smaller k£ but will be interested in increasing it to catch
all the dimensions. We are interested in applying our frame-
work to see whether our scaling expectations as a function
of k are valid. This use case is an example of algorithmic
modeling since the model parameter k is a parameter of the
algorithm itself.

Following the four steps of our approach, we start by
defining the expectations. Along with k, the parameters
of MAFTA are the number of data points n, the dimension-
ality of the points d, and the number of clusters m. We fur-
ther identify four main functions (i.e., kernels) in the main
computation phase of MAFIA, gen, dedup, pcount, and un-
join. They correspond to the generation of candidate sets,
de-duplication of them, identifying dense sets, and checking
whether lower dimensional sets were not already absorbed
by the higher ones [16] respectively. Table 4 presents the ex-
pectations for these functions provided by Adinetz et al. [3]
in their effort to optimize MAFIA.

The benchmarking process was much simpler in this case
since MAFTA is a serial code and we were not modeling scal-
ability on an increasing number of cores. The focus in this
use case was the runtime of the algorithm as k increases;
therefore we set the other parameters as follows: n = 10,
d = 20, and m = 3. The experiments were conducted on
one node of Juropa and repeated for k = 3,4,...,16. In
contrast to the MPI study, all the expectations were expo-
nential: O(k2%), O(k*2%), and O(k*2"). In all of these cases
we did not change the default deviation limits or the search
space boundaries. As Table 4 shows, all the generated mod-
els matched our expectations completely or were inside the
deviation limits.

This example illustrates the flexibility of our approach,
which can be adapted to different scalability problems with
different expectations.

S. RELATED WORK

Our approach combines two earlier ideas, performance
assertions [21] and automated empirical performance mod-
eling [6], into a new approach for practical performance-
centric code design. Performance assertions are source-code
annotations that specify performance requirements in terms
of conditional expressions consisting of performance metrics,
program variables, and constants. At runtime, the expres-
sions are instantiated with measurements and subsequently
evaluated. Violations are reported. If the number of pro-
cesses is included in such an expression, performance asser-
tions can be used to verify the compliance with scalability
requirements as long as these can be specified in terms of
performance data acquired during a single run. Even though
assertions support tolerance thresholds, their design neces-
sitates a rather precise notion of how the application should
perform at a given number of processes. Because of the
detailed understanding of the code and/or the underlying
system this requires, it is often unrealistic to expect such
a precise notion. Furthermore, it is rarely portable. Our
approach, in contrast, specifies scalability expectations in
terms of the more prevalent asymptotic complexities, ignor-
ing platform-dependent coefficients. Rather than looking at
a single run, we determine and evaluate the growth rate of a
given metric across multiple runs with an increasing number
of processes. Thus, our approach would be more practical in
the common scenario where the developer has only a vague
idea of how the code scales.

The model generator we apply to create our performance
models is similar in spirit to the one used by Calotoiu et
al. [6]. While their generator uses a manually configured
search space, our extended generator builds the search space
automatically around an expected performance model, lever-
aging the user’s available knowledge. It means that it can
also find exponential models - something which is not sup-
ported by their generator. Another difference is that we
compute divergence models as an indicator of how the devi-
ation would grow as the scale increases. We expect that our
methodology integrates well with other performance model-
ing frameworks such as PALM [18] or the PMaC tools [14].

Our case study, the scalability analysis of MPI implemen-
tations, was inspired by various MPI benchmarking efforts.
Notably, SKaMPI [17] defined a way to accurately mea-
sure collective operations [23], which was later extended in
NBCBench [9,10] and which we adapted for our work. Our
idea of comparing the scalability of different parts of the tar-
get library was motivated by mpicroscope [20]. Instead of
giving the users direct time metrics, the benchmark searches
for violations of performance guidelines. One guideline, for
example, states that MPI_Allreduce should take a smaller
or equal amount of time when compared to MPI_Reduce fol-
lowed by MPI_Bcast. A violation of this guideline suggests
that there is some optimization flaw in an MPI implemen-
tation. However, our approach offers a different perspective
since it automatically evaluates the guidelines using the gen-
erated models, and thus can predict violations for a large
number of processes.

6. CONCLUSION

In this paper, we propose a new software engineering disci-
pline for extreme-scale systems. With our scheme, we iden-
tify scalability issues in libraries which are thought to be



scalable and pinpoint possible performance bugs and room
for improvement. In contrast to previous approaches, our
technique only requires the performance engineer to have
a vague (asymptotic) idea of the scalability, although the
accuracy improves if more information is available (e.g., a
performance litmus test or more precise expectations). We
also supply a tool chain that automates large parts of our
four-step process and is ready for immediate use by perfor-
mance engineers.

To achieve this, our tool chain utilizes automated perfor-
mance modeling to generate analytical models of the run-
time and memory overheads of selected library functions.
Divergence models derived from the generated models show
how the actual behavior differs when increasing the num-
ber of processes, revealing potential performance problems
in the implementation.

We demonstrate the effectiveness of our mechanism us-
ing what is probably the most important library interface
in HPC: the Message Passing Interface. We chose it as a
use case because many commercially mature and well-tested
implementations are available and clear performance expec-
tations exist in the literature. We show how our approach
enables MPI developers to spot scalability bugs early on,
before commencing full-scale tests on the target supercom-
puter. For this, we used automated experiments on three
different machines with three different MPI libraries, and
our tool discovered a number of scalability issues that can be
grouped into the following cases: (a) key collective functions
on Juropa and Piz Daint display unexpected behavior; (b)
the performance guideline Allreduce < Reduce + Bcast is
potentially violated on Piz Daint; (¢) memory consumption
on Juropa limits the number of possible processes; (d) com-
municator duplication on Piz Daint consumes more mem-
ory than necessary. We conclude that our approach is a
viable technique that can both point to limitations of the
systems and provide MPI developers with important hints
for improving the scalability of their implementations. We
also expect that this will motivate the development of clear
performance expectations for other parallel libraries such as
ScaLAPACK or the parallel BLAS.
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