The HOPSA Workflow and Tools

Bernd Mohr, Vladimir Voevodin, Judit Giménez, Erik Hagersten,
Andreas Kniipfer, Dmitry A. Nikitenko, Mats Nilsson, Harald Servat, Aamer Shah,
Frank Winkler, Felix Wolf, and Ilya Zhujov

Abstract To maximise the scientific output of a high-performance computing sys-
tem, different stakeholders pursue different strategies. While individual application
developers are trying to shorten the time to solution by optimising their codes, sys-
tem administrators are tuning the configuration of the overall system to increase
its throughput. Yet, the complexity of today’s machines with their strong interrela-
tionship between application and system performance presents serious challenges
to achieving these goals. The HOPSA project (HOlistic Performance System Anal-
ysis) therefore sets out to create an integrated diagnostic infrastructure for com-
bined application and system-level tuning - with the former provided by the EU
and the latter by the Russian project partners. Starting from system-wide basic per-
formance screening of individual jobs, an automated workflow routes findings on
potential bottlenecks either to application developers or system administrators with
recommendations on how to identify their root cause using more powerful diag-
nostic tools. Developers can choose from a variety of mature performance-analysis

Bernd Mohr, Ilya Zhukov
Forschungszentrum Jiilich GmbH, Jiilich Supercomputing Centre, Germany,
e-mail: {b.mohr, i.zhukov}@fz—juelich.de

Vladimir Voevodin, Dmitry A. Nikitenko
Moscow State University, RCC, Russia, e-mail: {voevodin, dan}@parallel.ru

Judit Giménez, Harald Servat
Barcelona Supercomputing Centre, Spain, e-mail: { judit, harald.servat}@bsc.es

Felix Wolf, Aamer Shah
German Research School for Simulation Sciences GmbH / RWTH Aachen University, Germany,
e-mail: {f.wolf, a.shah}@grs—-sim.de

Erik Hagersten, Mats Nilsson
Rogue Wave Software AB, Sweden,
e-mail: {Erik.Hagersten, Mats.Nilsson}@roguewave.com

Andreas Kniipfer, Frank Winkler
Technical University Dresden, Germany,
e-mail: {andreas.knuepfer, frank.winkler}@tu-dresden.de

2 B. Mohr, V. Voevodin et al.

tools developed by our consortium. Within this project, the tools will be further in-
tegrated and enhanced with respect to scalability, depth of analysis, and support for
asynchronous tasking, a node-level paradigm playing an increasingly important role
in hybrid programs on emerging hierarchical and heterogeneous systems.

1 Introduction

To maximise the scientific and commercial output of a high-performance computing
system, different stakeholders pursue different strategies. While individual applica-
tion developers are trying to shorten the time to solution by optimising their codes,
system administrators are tuning the configuration of the overall system to increase
its throughput. Yet, the complexity of today’s machines with their strong interrela-
tionship between application and system-level performance demands an integration
of application and system programming.

e In-depth performance analysis
using specialised tools
* Communication

kv Application * Synchronisation
. * Memory performance
/ tuning N « Filel/0

Identification of

* Optimisation candidates

* Their primary issues
System-wide * Further diagnostics
performance
screening of

individual jobs

Identification of
system-related
application bottlenecks

Performance analysis of
different subsystems using
system-performance database

System-level
Russia tuning

=

Fig.1 System-level tuning (bottom), application-level tuning (top), and system-wide performance
screening (centre) use common interfaces for exchanging performance properties.

The HOPSA project (HOlistic Performance System Analysis) therefore sets out
for the first time to develop an integrated diagnostic infrastructure for combined
application and system-level tuning. Using more powerful diagnostic tools appli-
cation developers and system administrators will easier identify the root causes of
their respective bottlenecks. With the HOPSA infrastructure, it is more effective to
optimise codes running on HPC systems. More efficient codes mean either getting
results faster or being able to get higher quality or more results in the same time.

The work in HOPSA is carried out by two coordinated projects funded by the
EU under call FP7-ICT- 2011-EU-Russia and the Russian Ministry of Education
and Science, respectively. Its objective is the new innovative integration of appli-

The HOPSA Workflow and Tools 3

cation tuning with overall system diagnosis and tuning to maximise the scientific
output of our HPC infrastructures. While the Russian consortium will focus on the
system aspect, the EU consortium will focus on the application aspect. At the inter-
face between these two facets of our holistic approach, which is illustrated in Fig-
ure 1, is the system-wide performance screening of individual jobs, pointing at both
inefficiencies of individual applications and system-related performance issues.

This article describes the overall workflow of performance analysis of parallel
programs using the HOPSA infrastructure, introduces the individual tools devel-
oped inside the project consortium, and shows how to use the tools in a comple-
mentary way. For detailed information, please see the user guides of the individual
performance-analysis tools.

At the centre of this workflow is the so-called lightweight measurement module
(LWM?). It is responsible for the first step in the workflow, the system-wide manda-
tory collection of basic performance data. For each execution on the cluster, LWM?
produces a so-called job digest. The metrics listed in this compact report indicate
whether an application suffers from an inherent performance problem or whether ap-
plication interference may have been at the root of dissatisfactory behaviour. They
also provide a first assessment regarding the nature of a potential performance prob-
lem and help to decide on further diagnostic steps using any of the more power-
ful performance-analysis tools. For each of those tools, a short summary is given
with information on the most important questions it can help to answer. Moreover,
the document covers Score-P [5], a common measurement infrastructure shared by
some of the tools. The performance data types supported by Score-P form a natural
refinement hierarchy that can be followed to track down and represent even complex
bottleneck situations at increasing levels of granularity. Finally, a brief excursion on
system-level tuning explains how system providers can leverage the data collected
by LWM? to identify a suboptimal system configuration or faulty components.

2 The HOPSA Workflow

2.1 Overview

The performance-analysis workflow (Figure 2) consists of two basic steps. During
the first step, we identify all those applications running on the system that may
suffer from inefficiencies. This is done via system-wide job screening supported
by a lightweight measurement module (LWM?) dynamically linked to every exe-
cutable. The screening output identifies potential problem areas such as communi-
cation, memory, or file I/O, and issues recommendations on which diagnostic tools
can be used to explore the issue further. Available application performance anal-
ysis tools include Paraver/Dimemas [1, 12], Scalasca [2], ThreadSpotter [3], and
Vampir [4]. The data collected by LWM? is also fed into the Clustrx.Watch hierar-
chical cluster monitoring system [13] which combines it with system and hardware

4 B. Mohr, V. Voevodin et al.

data and forwards it to the LAPTA cluster monitoring and analysis system [14] for
further analysis by system administrators.

In general, the workflow successively narrows the analysis focus and increases
the level of detail at which performance data are collected. At the same time, the
measurement configuration is optimised to keep intrusion low and limit the amount
of data that needs to be stored. To distinguish between system and application-
related performance problems, some of the tools allow also system-level data to be
retrieved and displayed. The system administrator, in contrast, has access to global
performance data. He can use this data to identify potential system performance bot-
tlenecks and to optimise the system configuration based on current workload needs.
In addition, the administrator can identify applications that continuously underper-
form and proactively offer performance-consulting services. In this way, it becomes
possible to reduce the unnecessary waste of expensive system resources.

Performance Screening Performance Diagnosis In-depth analysis
Mandatory Intra-node —— : ':.__;
job screening performance | =
with LWM? User e
and ClustrX - =
Basic Job ThreadSpotter
application digest —
+system Application-level tuning B %
metrics Inter-node = =
performance =
= ——
. Scalasca (Cube)
B Pro-active Job Info
_ performance of User
performance consulting Traces with
database application &
system
Administrator metrics
Global

workload data full VACSAS

+ job digests access —

System-level tuning

LAPTA system-level analysis

Fig. 2 Overview of the performance analysis workflow.

2.2 Performance Screening

This step decides whether an application behaves inefficiently. On the side of the
user, nothing has to be done except running the application as usual. Upon applica-
tion start, LWM? is automatically and transparently linked to the executable through
library pre-loading. At runtime, the module collects basic performance data with
very low overhead. The performance data characterise various aspects such as se-
quential performance, parallel performance, and file I/O. At the end of execution,
the user receives a job digest that contains the most important performance met-

The HOPSA Workflow and Tools 5

rics. The digest also recommends further diagnostics in the case certain key metrics
show unexpected values, which may often be indicative of a performance problem.
If needed, the user can disable LWM?, for example, to avoid interference with the
analysis tools used in subsequent stages of the tuning process.

2.2.1 The Lightweight Measurement Module LWM?

The lightweight measurement module LWM? collects basic performance data for
every process of a parallel application. It supports applications based on MPI and
multithreaded applications based on POSIX Threads or any higher-level model im-
plemented on top of it, which usually includes OpenMP. Multithreaded MPI appli-
cations and applications that additionally use CUDA are supported as well. To keep
the overhead at a minimum, the module applies a combination of sampling and
careful direct instrumentation via interposition wrappers. Direct instrumentation is
needed to track the state of a thread (e.g., whether it executes inside or outside an
MPI function) and to access relevant communication or I/O parameters such as the
number of bytes sent or written to disk. Based on the state tracking performed by
the instrumentation, sampling partitions the execution time into different compo-
nents such as computation, communication, or I/O. LWM? refrains from direct time
measurements as far as possible. Hardware counters deliver basic information on
single-node performance. To save storage space, the performance data of individual
threads are folded into per-process metrics such as the average number of threads.

In addition to collecting performance data separately for each process, LWM?
divides the time axis into disjoint slices, recording selected metrics related to the
use of shared resources at this finer granularity. The slices have a length of 10s and
are synchronized across the entire machine. Together with the location of each pro-
cess on the cluster, which LWM? records along with the performance data, LWM?
provides performance data for each active cell of a cluster-wide time-space grid.
The discretised time axis constitutes the first dimension, the nodes of the system the
second one.

The purpose of organising the performance data in this way is threefold: First,
by comparing the data of different jobs that were active during the same time slice,
it becomes possible to see signs of interference between applications. Examples in-
clude reduced communication performance due to overall network saturation or low
I/0 bandwidth due to concurrent I/O requests from other jobs. Second, by looking at
the performance data of the same node across a larger number of jobs and compar-
ing it to the performance of other nodes during the same period, anomalies can be
detected that would otherwise be hidden when analysing performance data only on
a per-job basis. Third, collecting synchronised performance data from all the jobs
running on a given system will open the way for new directions in the development
of job scheduling algorithms that take the performance characteristics of individual
jobs into account. For example, to avoid file-server contention and waiting time that
may occur in its wake, it might be wiser not to co-schedule I/O-intensive applica-
tions. In this way, overall system utilisation may be further improved.

6 B. Mohr, V. Voevodin et al.

After the expiration of every time slice, LWM? passes the data of the current time
slice on to Clustrx.Watch, a system-monitoring infrastructure running on each node.
Clustrx augments these data with system data collected using various sensors and
forwards them to the LAPTA system performance database.

2.2.2 LAPTA

LAPTA is a pAckage for Performance moniToring and Analysis. The software is
aimed at providing flexible, scalable and extendable infrastructure for system-level
performance analysis. It includes special tools and interfaces for data collection sup-
porting various data collectors (Clustrx, Ganglia, LWMZ, etc.), data storage sup-
porting wide range of databases (MongoDB, Cassandra, etc.) and both stored and
streamed data access and analysis. LAPTA provides interfaces to access the col-
lected system monitoring data for both query models: post mortem and on-the-fly.
For example LAPTA serves as the basis for Job Digest generation based on system-
level performance monitoring data. The screening of general job behavior through
Job Digest is very useful for users and tuners to understand the possible bottlenecks
that can be seen at a glance (like network overload, bad data locality, inefficient
memory usage, too intensive I/O, etc.). Also, performance data of the same appli-
cation collected over an extended period of time will document the tuning and scal-
ing history of this application allowing to make even more detailed analysis of the
dynamic application behavior further. Studying the performance behaviour of the
entire job mix will allow to make conclusions on the optimal system configuration
for the given workload. For example, system providers will learn whether require-
ments to amount of physical memory available, I/O or network bandwidth and other
system hardware requirements were over- or underestimated.

2.3 Performance Diagnosis

This step decides why an application behaves inefficiently. It is only needed if the
screening identifies a potential performance problem. Depending on the recommen-
dation made by LWM? | the user chooses one or more of the performance-analysis
tools offered by the HOPSA tool environment. The general strategy of the diagno-
sis is to start with an overview and then to go deeper as more information on the
problem’s root cause becomes available.

2.3.1 Overview of the Performance Analysis Tool Suite
An overview of the HOPSA performance analysis tool suite is presented in Table 1.

For the analysis of intra-node performance, ThreadSpotter is the primary tool,
with the possibility of more detailed analyses using Paraver. For investigating inter-

The HOPSA Workflow and Tools 7

Table 1 Classification of tools based on problem class and level of detail.

Intra-node Inter-node 1/0
peformance peformance
Overview ThreadSpotter Score-P Profile + Cube Scalasca(Cube)
In-depth analysis ThreadSpotter, Scalasca Trace Analyzer + Paraver, Vampir
Paraver, Vampir Cube, Paraver, Vampir

node performance, looking at a performance profile using Scalasca’s Cube browser
is a good starting point. For even more detailed analyses, the results of the Scalasca
trace-analyser can be displayed in Cube, or the Vampir and Paraver/Dimemas tools
can be used for a detailed visual exploration of the traces. For understanding I/O-
related issues, profiles displayed in the Cube browser give a good overview, while
Vampir can be used for more in- depth analysis.

2.3.2 The Score-P Instrumentation and Measurement System

The Score-P [5] measurement infrastructure is a highly scalable and easy-to-use
tool suite for profiling, event tracing, and online analysis of HPC applications. It
collects performance data that can be analysed using the HOPSA tools Scalasca and
Vampir. In addition, it supports the performance tools Persicope [6] and TAU [7] de-
veloped outside the HOPSA project. Score-P has been created in the projects SILC
and PRIMA funded by the German Ministry of Education and Research and the US
Department of Energy, respectively. It will be maintained and further enhanced in a
number of follow-up projects including HOPSA.

The main performance data formats produced by Score-P are CUBE-4 [8] for
profiles and OTF2 [9] for event traces. Profiles provide a compact performance
overview, while event traces allow the in-depth analysis of parallel performance
phenomena. While classic profiles aggregate performance metrics across the entire
execution, time-series profiles treat individual iterations of the application’s main
loop separately, which allows studying the temporal evolution of the performance
behaviour. They provide less detail than event traces, but can cover longer execu-
tions. Together, the above-mentioned options form a hierarchy of performance data
types with increasing level of detail. The main advantage of Score-P is that a user
needs to become familiar with only one set of instrumentation commands to pro-
duce all theses data types, which can be analysed using the majority of the tools
listed Table 1. Figure 3 provides and overview of the different performance data
types supported by Score-P and the tools that can be used to analyse them. Below
we cover the individual data types in more detail.

Profiles Profiles in the CUBE-4 format map a set of performance metrics such
as the time spent on some activity or the number of messages sent or received
onto pairs of call paths and processes (or threads in multithreaded applications).

8 B. Mohr, V. Voevodin et al.

Metrics with a specialization (i.e., subset) relationship can be arranged and dis-
played in a hierarchy. The call-path dimension forms the natural call-tree hierar-
chy. Processes and threads are also arranged in an inclusion hierarchy together
with hardware components such as the nodes they reside on. In addition, it is
possible to define Cartesian process topologies to represent network or virtual
topologies. Profiles can be visually explored using the Cube browser. Compared
to its predecessor CUBE-3, CUBE-4 files have been optimized for fast writing
by storing the metric values in a binary file.

Time-Series Profiles Time-series profiles are like normal CUBE-4 profiles ex-
cept that they maintain a separate sub-tree in the call tree for each iteration of the
time-step loop. This allows the user to distinguish individual iterations and to ob-
serve the evolution of the performance behaviour along the time axis. Time-series
profiles are created by annotating the body of the time-step loop with special in-
strumentation, which tells Score-P when an iteration ends and when a new one
begins. They can be analysed using the normal Cube display. A future version of
Cube (to be completed after this project ends) will provide special iteration dia-
grams that offer an easy way to judge how the performance changes over time.
To avoid that profiling data exceeds the available buffer space, future versions of
Score-P will support the dynamic compression of time-series profile data using
an online clustering algorithm [15].

Event Traces Event traces include all events of an application run that are of in-
terest for later examination, together with the time they occurred and a number
of event-type-specific attributes. Typical events are entering and leaving of func-
tions or sending and receiving of messages. Event traces produced by Score-P are
stored in the Open Trace Format Version 2 (OTF-2), a new trace format whose
design is based on the experiences with the two predecessor formats OTF [10]
and EPILOG [11], the former native formats of Vampir and Scalasca, respec-
tively. The main characteristics of OTF-2 are similar to other record-based par-
allel event trace formats. It contains events and definitions and distributes data
storage over multiple files. In addition, it is more memory efficient, offering the
possibility to achieve measurements with less perturbation due to memory buffer
flushes. In contrast to OTF, the event traces are stored in a binary format, which
reduces the size of the trace files without the need for a separate compression
step. OFT-2 traces are the foundation for further analysis. Vampir can display
OTF-2 traces visually using different kinds of displays, including a zoomable
timeline. The Scalasca trace analyser identifies wait states and their root causes,
producing a CUBE-4 file that provides a higher-level view of the application per-
formance data. This is typically recommended to get an idea of key performance
issues before visually exploring the traces directly using a trace browser. More-
over, there is on-going work to convert the traces to the Paraver format so that
they can be analysed using Paraver (visual exploration) and Dimemas (what-if
analysis).

The HOPSA Workflow and Tools 9

Paraver /
Dimemas

Cube Cube* Vampir

. ime-seri Event
Profile Time-series
CUBE-4 profile trace
CUBE-4 Paraver

Scalasca wait-
state analysis

Fig. 3 Performance data types supported by Score-P and the tools that can be used to analyse
them. The * next to the second mentioning of Cube indicates a display type that will be provided
in a future version.

Overhead Minimisation

Another important aspect is the quality of the collected performance data in terms
of intrusion and their size. To keep both intrusion and data size small, the Score-P
measurement system offers a systematic approach of expanding the level of detail
while at the same time narrowing the measurement focus:

1. Generate a summary profile with generous instrumentation while measuring the
overhead. If the overhead is too large (> 10%), reduce instrumentation, for ex-
ample, through the application of filter lists. Measure overhead again and iterate
until the overhead is satisfactory.

2. Generate a new summary profile with acceptable overhead. This provides an
overview of the performance behaviour across the entire execution time and al-
lows the identification of suspicious call paths and processes.

3. Generate a time-series profile, which provides a separate summary profile for
every iteration of the time-step loop. This shows to which degree the performance
behaviour changes as the simulation progresses and allows the identification of
iterations that warrant deeper analysis. A semantic compression algorithm will
ensure that the size of time-series profiles stays within reasonable limits.

4. For the identified iterations, generate event traces. Event traces provide the high-
est level of detail and offer a number of interesting analysis options including
automatic wait-state analysis and visual exploration.

10 B. Mohr, V. Voevodin et al.

2.4 The HOPSA Performance Tools

This section introduces the various HOPSA performance tools.

2.4.1 Dimemas

Dimemas [12] is a performance prediction tool for message-passing programs. The
Dimemas simulator reconstructs the time behaviour of a parallel application using as
input an event trace that captures the time resource demands (CPU and network) of
a parallel application. The target machine is modeled by a reduced set of key factors
influencing the performance that model linear components like the point-to-point
transfer time as well as non-linear factors like resources contention or synchroni-
sation. Using a simple model, Dimemas allows performing parametric studies in a
very short time frame. The supported target architecture is a cloud of parallel ma-
chines, each one with multiple nodes and multiples CPUs per node allowing the
evaluation of a very wide range of alternatives, despite the most common environ-
ment is a computing cluster. Dimemas can generate as part of its output a Paraver
trace file, enabling the user to conveniently examine the simulated run and under-
stand the application behaviour.

Typical questions Dimemas helps to answer

How would my application perform in a future system?

Can increasing the network bandwidth improve the application performance?
Would my application benefit from asynchronous communication?

Is my application limited by the network or by serialisation and dependency
chains in my code?

What is the sensitivity of my application to different system parameters?

What would be the impact of accelerating specific regions of my code?

2.4.2 Paraver

Paraver [1] is a very flexible data browser that is part of the CEPBA-Tools toolkit. Its
analysis power is based on two main pillars. First, its trace format has no semantics;
extending the tool to support new performance data or new programming models re-
quires no changes to the visualiser — just capturing such data in a Paraver trace. The
second pillar is that the metrics are not hardwired in the tool but can be programmed.
To compute them, the tool offers a large set of time functions, a filter module, and a
mechanism to combine two timelines. This approach allows displaying a huge num-
ber of metrics with the available data. To capture the expert’s knowledge, any view
or set of views can be saved as a Paraver configuration file. After that, re-computing
the view with new data is as simple as loading the saved file. The tool has been

The HOPSA Workflow and Tools 11

demonstrated to be very useful for performance analysis studies, giving much more
details about the application behaviour than most other performance tools.

Performance information in Paraver is presented with two main displays that pro-
vide qualitatively different types of information. The timeline display represents the
behaviour of the application along time and processes, in a way that easily conveys
to the user a general understanding of the application behaviour and simple iden-
tification of phases and patterns. The statistics display provides numerical analysis
of the data that can be applied to any user-selected region, helping to draw conclu-
sions on where and how to focus the optimisation effort. See Figures 4 and 5 for an
example of Paraver’s main displays.

Useful Duration @ WEF.MN.256p.chopl clustered.prv
THREAD 1.1.1

THEEAD
THREAD 1.
THREAD 1.
THREAD 1
THREAD
THEEAD
THREAD
THREAD
THREAD
THREAD 1.

33,902 us 2,848,090 us

Fig. 4 Paraver timeline display.

Histogram of computing durations @ WEF.MN.256p.chopl clustered.prv

— e T S e =
£l . = =k
[= = i
y e :

Ll s
=1 5 __:: - - = = o

I £ -'-E- A : = 8
| . = %
1| T -

| . = =
1 e e e 5

Fig. 5 Paraver histogram display.

Typical questions Paraver helps to answer

What is the parallelisation efficiency and the performance of communication?
What are the differences that can be observed between two different executions?
Does the behaviour of the application change over time?

Are performance or workload variations the cause of load imbalances in compu-
tation?

e Which performance issues do the microprocessor’s hardware counters reflect?

12 B. Mohr, V. Voevodin et al.

2.4.3 Scalasca

Scalasca [2] is a free software tool that supports the performance optimisation of
parallel programs by measuring and analysing their runtime behaviour. The tool has
been specifically designed for use on large-scale systems including IBM Blue Gene
and Cray XE, but is also well suited for small- and medium-scale HPC platforms.
The analysis identifies potential performance bottlenecks — in particular those con-
cerning communication and synchronization — and offers guidance in exploring their
causes.

File Display Topology Help

Own root percent v Metric selection percent v Peer distributi v
Metric tree Calltree | Flatview Systemtree Box Plot BGQ Hardware | Topology 1
[70.00 Time. A Erm0.00bt A B
(142,27 Execution 0.00 mpi_setup
(M 0.00 MPI [0.00 MPI_Beast
[J 0.00 Synchronization 0.00 env_setup
& I 0.00 Collective - Il 0.00 zone_setup
W 0.01 Wait at Barrier - I 0.04 map_zones
1 0.00 Barrier Completion - [0.03 zone_starts
[0.00 Communication k[0.00 set_constants
M 0.00 Point-to-point W 0.08 initiaize
I 0.20 Late Sender 0.05 exact_rhs
& [0.00 Messages in Wrong Order 0.00 exch_gbc
0.52 From different sources I 0.06 copy_x_face
[0.00 From same source 1 0.03 copy_y_face
[0.00 Late Receiver [J0.00 MPI_lIsend
0.00 Colective [0.00 MPI_Irecy
[0.00 Early Reduce [0.00 MPI_Waital
0 0.00 Early Scan 0.00 adi
8 0.00 Late Broadcast ([16.49 compute_rhs
[0.00 Wait at N x N [0 25.80 x_solve
[0.00 N x N Completion 0 27.51 y_solve

- (W 0.00 InitExit

3 O 26,65 2_solve

[5.98 OMP M 1.19 add
- I 0.02 Overhead - 01 0.00 MPI_Barrier
(1 50.97 Idle threads 0.07 verify
- 8 100.00 Visits F 01 0.00 MPI_Reduce
100.00 Synchronizations - 01 0.00 print _resuts
[100.00 Communications [J 0.00 MPI_Finalize

= 100.00 Bytes transferred
100.00 Computational imbalance

C)

U U [TmETmE —<T><T><]
select [y [[CIDARED |
() (j [z [>< | ><|>< [><]|
0.00 4227 100.00][0.00 28.65 100.00) ‘u.oo 0.00 100.00)
[

Fig. 6 Interactive exploration of performance behaviour in Scalasca along the dimensions perfor-
mance metric (left), call tree (middle), and process topology (right). Screendump shows result of a
524,288 threads run on the Jiilich BlueGene/Q machine.

The user of Scalasca can choose between two different analysis modes: (i) per-
formance overview on the call-path level via profiling and (ii) the analysis of wait-
state formation via event tracing. Wait states often occur in the wake of load imbal-
ance and are serious obstacles to achieving satisfactory performance. Performance-
analysis results are presented to the user in an interactive explorer called Cube (Fig-
ure 6) that allows the investigation of the performance behaviour on different levels
of granularity along the dimensions performance problem, call path, and process.
The software has been installed at numerous sites in the world and has been suc-
cessfully used to optimise academic and industrial simulation codes.

The HOPSA Workflow and Tools 13

Typical questions Scalasca helps to answer

e Which call-paths in my program consume most of the time?

e Why is the time spent in communication or synchronisation higher than ex-
pected?

e Does my program suffer from load imbalance and why?

2.4.4 ThreadSpotter

ThreadSpotter [3] is a commercial tool that will help programmers optimise their
programs with respect to architectural bottlenecks such as cache size and mem-
ory system bandwidth and point out inefficient communication modes between
threads. Its scope is a single process, including both single-threaded as well as multi-
threaded applications.

(2 hitp://localhost: 29871 /session/main. £ B & X | 2 Acumem ThreadSpotter: n... *
77

Issues || Loops || Summary | Files | Execution || About/Help 73 DI = size (L.+(ksax)) / (L+ax) 5
4 plil.y = size*(l.+(k/3x))/ (L+ay) i
Bandwidth Issues Latency Issues Multi-Threading Issues Pollution Issues. 7
i S A %
Issue type e SN I T 7 7/ assign random velocities within a bound
Filter: All - communication® " wtilization sharing | b
12 @ E0) |Communication utilization 100.0% 7.3% 0.2% 7 Blil.vx = drendde()*2-1;
14 M8 Faise] |Faise sharing 100.0% 7.3% 0.2% o plil.vy = arandiz()2-1:
1 }
Copyright (c) 2006-2011 Rague Wave Software, Inc. All Rights Reserved. 2 free(shutfle);
Patents pending. 83)
4
5 "
. wit /7 iaveract wo parvicies
Issue #14: False sharing s s i i
s+]49% void apply_force(particle t sparticle, particle t sneighbor)
+ Statistics for instructions of this issue e 2
e | |t
= Instructions involved in this issue | | E
e #|2s3% | couste ax = neignbor.x - parvicle.s;
stack — ol T Wl [Feh | Teeh | WE | 069 paemenmd 52|
o - b2 #]1es% | douste ay = neigmbor.y - parvicle.y;
= o o por B oo B9 OmerE ¢ |52 |00 |
10% 5.5% 10% 23.8% 1000% s | double r2 = dx * dx + dy * dy;
| ar(= > curorerousore)
) .) . | | cevarn;
=/ Instructions causing false sharing of the cache line s | | =2 = max(=2, min vminr);
o | oupte = = sqee(=2 1
Stack: Instruction e | |
+ copdd s | |
+ . 100 } } #/ very simple short-range repulsive force
101 4
H|sbodslagely T2 | | double coef = (1 - eutoff / r) / r2 / mass:
4 I Yo | | particle.sx += cost * dx:
Placeholder. Click on an issue, loop or fle 104 | | parcicie.ay += coer * ay:
TEEI L

A e =
« I ’

Fig. 7 Highlighting a “false sharing” situation. Top left part contains lists of problems. Lower left
contains details, and annotated source code is to the right.

Some programming styles will exercise the memory system in suboptimal ways
that can reduce performance drastically. Examples of these are failure to observe
or exploit locality properties in code or data. Inappropriate communication through
shared memory between threads may cause the coherence traffic to become a bot-
tleneck.

14 B. Mohr, V. Voevodin et al.

ThreadSpotter explains the inefficiencies of observed memory access patterns
on a high level in a graphical user interface (Figure 7) and provides pointers to
suggestions to optimise the code. It offers deep explanations on hardware level to
back up the suggestions, educating the user as he uses the tool.

Typical questions ThreadSpotter helps to answer

How does my program abuse the memory system and what can I do about it?
Do the threads of my program exchange data with each other in an inefficient
way?

e When adjusting my program, are the changes actually helping to minimise the
footprint of the application?

2.4.5 Vampir

Vampir [4] is a graphical analysis framework that provides a large set of different
chart representations of event-based performance data. These graphical displays,
including timelines and statistics, can be used by developers to obtain a better un-
derstanding of their parallel program’s inner working and to subsequently optimise
it. See Figure 8 for an impression of the Vampir GUI.

® ® @ Vampir - Trace View - Tracefile-Server:/var/traces/wrf_0064_1h fpops_io_mem_rusage/wrf.1h.otf*

File Edit Chart Filter Wi p 66
EtwGeIEw2 S Gy 0 57 WINNNN QM0 AR NIP INNE IDOHY iR G
Timeline Function Summary
20s 30s 40's All Processes, Accumulated Exclusive Time per Function ...
Process 0 : 7505 5005 2505 0s
Process 5 | | 944,994 5 " " DYN
Process 10 | —
chess %3 | MPI
rocess
process 25 | PHYS
rocess H i
B I~y
x s
Process 45 v
Procéss 50 : H
chess 23 H Communication Matrix View
rocess Number of Messages
Process 0 H :
1 . 8 Process 0 '%%- 1,80
2 T module integrate_mp_integrate_ W Process 7 1,601
i Process 14 1,40
. Process 21 1,20
E L e " Process 28 1,000
Process 0, Values of Counter "MEM_APP_ALLOC" over Time
f Process 35 800
100 M i P "
80 M R rocess 600
@ VR
g gg m By LS Process 49 400
2
20 M Process 56 200
oM Process 63
Context View
Function Legend Process Summary . .
[Application similar Processes, Accumulated Exclusive Time per Function = [lictiop=unmaivie)
W o 0s 10s 20s 30s 40s Property Value
Mo 30 [N Display Function Summary
Mo NI | 11 o Function Group MPI (6)
MEM 14 “DI:D " S | Accumulated Exclusive Time 769.39865 s (29.67%)
B mpi . i

Connected: Tracefile-Server

Fig. 8 Vampir GUI

The HOPSA Workflow and Tools 15

Vampir is designed to be an intuitive tool, with a GUI that enables developers
to quickly display program behavior at any level of detail. Different timeline dis-
plays show application activities and communication along a time axis, which can
be zoomed and scrolled. Statistical displays provide quantitative results for the cur-
rently selected time interval. Powerful zooming and scrolling along the timeline
and process/thread axis allows pinpointing the causes of performance problems. All
displays have context-sensitive menus, which provide additional information and
customisation options. Extensive filtering capabilities for processes, functions, mes-
sages or collective operations help to narrow down the information to the interesting
spots. Vampir is based on Qt and is available for all major workstation operation sys-
tems as well as on most parallel production systems. The parallel version of Vampir,
VampirServer, provides fast interactive analysis of ultra large data volumes.

Typical questions Vampir helps to answer

e What happens in my application execution during a given time in a given process
or thread?
How do the communication patterns of my application execute on a real system?
Are there any imbalances in computation, I/O or memory usage and how do they
affect the parallel execution of my application?

2.5 Integration among Performance Analysis Tools

Sharing the common measurement infrastructure Score-P and its data formats and
providing conversion utilities if direct sharing is not possible, the performance tools
in the HOPSA environment and workflow already make it easier to switch from
higher-level analyses provided by tools like Sclasca to more in-depth analyses pro-
vided by tools like Paraver or Vampir. To simplify this transition even further, the
HOPSA tools are integrated in various ways. With its automatic trace analysis,
Scalasca locates call paths affected by wait states caused by load or communica-
tion imbalance. However, to find and fix these problems in a user application, it is
in some cases necessary to understand the spatial and temporal context leading to
the inefficiency, a step naturally supported by trace visualizers like Paraver or Vam-
pir. To make this step easier, the Scalasca analysis remembers the worst instance
for each of the performance problems it recognizes. Then, the Cube result browser
can launch a trace browser and zoom the timeline into the interval of the trace that
corresponds to the worst instance of the recognized performance problems.

In the future, the same mechanisms will be available for a more detailed visual
exploration of the results of Scalasca’s root cause analysis as well as for further
analyzing call paths involving user functions that take too much execution time.
For the latter, ThreadSpotter will be available to investigate their memory, cache
and multi-threading behaviour. If a ThreadSpotter report is available for the same

16 B. Mohr, V. Voevodin et al.

Cube 3.0 QT: pexpert/solve 2-5.cube
File Display Help

Open Ctit+0 ‘@@JE“ ot 302 [2lyrot|
Close Cike e —
Open extemal e \

. - e | Flatview

iyl 50e_nmm (0.00%) =]
00 wf_get_myproc
Settings Connectto paraver Ctr+P | 00 wif_dm_on_monitor
amic loading threshold ~ Ctri+D LJ'0.00 wif_get_dm_communicator
o o 0 0.00wt_get_nproc
‘Screenshot cubs |y 00 000 buckets

Quit cisQ ‘:asl @ 0 0.00rsl_te_init_exch
| & 0] 0.00rsl_iite_pack
EoheR2:s Obe & 0 0.00rsl_lite_exch_y
03 0.00 Late Receiver & 0] 0.00sl_iite_exch x
L [0.00 Messages in Wrong Order, [0 0.00 buffer_for_proc
I 1.70 Late Sender 00,00 MPI_irecy
L [1.99 Messages in Wrong Order| 0000 MPI_isend
Odo.00l0 [0 0.00 MPI_wait
0 0.00 initExit 00,00 wit_message
£ 0.00 Synchronization t 0 0.00 rctemp
& [J 0.00 Barrier 0 0.00 cltend
[0.00 Barrier Completion & [J 0.00 __module_advection_NMOD_
0 0.00 waitAtBarrier I:D 0.00 wrf_get_dm_communicator
0 0.00 Overhead moes
H 253e5 Visits Collapse al
Collapse subtree
& Expand al
< o) Expand subtree
[0.000000 0.684595 (1.136389%) 50243010] [0000000 068459 _ Expand argest
Finditems
3 =
Rl Find Next
Unmark items
Info

Online description

0 Connectto trace browser

8 Max severity in trace browser

Fig. 9 Scalasca to Vampir or Paraver Trace browser integration. In a first step, when the user
requests to connect to a trace browser, the selected visualizer is automatically started and the event
trace, which was previously the basis of Scalasca’s trace analysis, is loaded. Now, in a second
step, the user can request a timeline view of the worst instance of each performance bottleneck
identified by Scalasca. The trace browser view automatically zooms to the right time interval. Now
the user can use the full analysis power of these tools to investigate the context of the identified
performance problem.

executable and dataset, Cube will allow launching detailed ThreadSpotter views for
each call path where data from both tools is available.

2.6 Integration of System Data and Performance Analysis Tools

The Russian ClustrX.Watch management software provides node-level sensor in-
formation that can give additional insight for performance analysis of applications
with respect to the specific system they are running on. This allows populating Par-
aver and Vampir traces with system information (the granularity will depend on the
overhead to obtain the data) and to analyze them with respect to the system-wide
performance.

The Russian LAPTA system data analysis and management software provides
node-level sensor information that can give additional insight for performance anal-
ysis of applications with respect to the specific system they are running on. This
allows populating Paraver and Vampir traces with system information collected by
Clustrx, Ganglia, and other sources (the granularity will depend on the overhead to

The HOPSA Workflow and Tools 17

Trace View - fhome/frank/Tracesfemetrics/traces.otf2 - Vampir

EMLeeITERES B 4 ¢ B B 9ass W
Timeline ax
0s 20s 40s 60s 80s 100s 120s 140s 160s

Rank 0
Rank 1
Rank 2
Rank 3
Rank 4

node ¢n11, Values of Metric "IB: port_xmit_packets counter” over Time
125k
100k -

75k - fl - IL Ml

s0k T \ \j V

R ~ P | W ! f

2k by AVAUATAVE LY (V.

node cn15, Values of Metric "IB: port_xmit_packets counter” over Time
100k

80k |
60k L1 |
: , e \}

&%

a0k l\\ - X

Values of Metric "IB: port_xmit_packets counter" over Time

nedecntt [N D11 | N I N IO | | | W S0
nodecnts [N 11D 11 N T I IO |11 | N N DRI

ok 10k 20k 30k 40k 50k 60 k 70k 80k 90k 100k
?.9‘75 s 30k

Fig. 10 Vampir screendump showing aligned system and application data.

obtain the data) and to analyze them with respect to the system-wide performance.
The system offers two different ways to access to the collected data:

Historic information is stored with a given granularity for all the sensors and all
the IP (nodes) on the system. The initial granularity was very coarse (one minute)
and did not seem useful for the population of application trace files because there
can be many different program phases in a one minute interval. On the other hand,
the circular buffer provides historical information with fine-grained detail (coarser
or equal to 1 second depending on the sensor) for the last minutes (300 measure-
ments). Streamed information can be requested for any range of sensors and IPs.
The interface provides at least a value every 10 seconds unless there is a change
greater than a 10%. Currently, the finest available granularity is 1 second.

Both mechanisms use a connection through an HTTP protocol that in the case
of the streamed data has to be refreshed periodically or dies after 5 minutes. We
evaluated both alternatives to see their potential and identified possible drawbacks.

The Vampir team implemented a prototype Score-P adapter that enhances OTF2
traces at the end of the measurement. For evaluation, the benchmark code HPL
was instrumented with Score-P. In addition to the application and MPI events, the
trace was enhanced with HOPSA node-level metrics and per-process PAPI coun-
ters. Tested and working HOPSA sensors include node memory usage values and
Infiniband packet counts. The evaluation shows that phases in the application clearly
correlate to measured values of the node level sensors, e.g. heavy MPI communi-
cation to Infiniband packet counters (see Figure 10. As a use case, this integration
allows the user to analyze how the application utilizes network hardware of each

18 B. Mohr, V. Voevodin et al.

node or how shared usage of network resources affects the application execution.
Currently the sensor values are available in 1 second granularity for the last 500
seconds and 1 minute granularity before that.

Full execution (297s) Iteration details (15s)

Memory Totalfree

Bytes written
Disk
Write ops
Recv packets
Network | Xmit packets \“l‘ﬁfvﬂf»‘[:'r. ot i T r‘“?

Xmit wait

Fig. 11 Paraver screendumps showing aligned system and application data.

The Paraver team experimented with Gromacs, a popular production code in life
sciences, trying to correlate the sensors values to the activity of the application As
one can see in Figure 11, on a higher level, it is possible to correlate system met-
rics with application program phases (left side of the picture). However, due to the
limited resolution of the system metrics data, this is not possible on a more detailed
level (see right side of the figure).

2.7 Opportunities for System Tuning

Several opportunities for system tuning arise from the availability of historic per-
formance data collected by LWM? . First, data on individual system nodes along
an extended period of time in comparison to other nodes can be analysed to spot
anomalies and detect deficient components. Second, data on the entire workload
can be used to improve the understanding of the workload requirements and con-
figure the system accordingly. The insights obtained may guide the evolution of the
system and influence future procurement decision. Finally, knowledge of the re-
source requirements of individual jobs offers the chance to develop resource-aware

The HOPSA Workflow and Tools 19

scheduling algorithms that avoid oversubscription of shared resources such as the
file system or the network.

3 Conclusions

The HOPSA project creates an integrated diagnostic infrastructure for combined ap-
plication and system tuning. Starting from system-wide basic performance screen-
ing of individual jobs, an automated workflow routes findings on potential bottle-
necks either to application developers or system administrators with recommen-
dations on how to identify their root cause using more powerful diagnostics. This
document specifies the performance analysis workflow that connects the different
steps. At the same time, it provides an impression of the overall vision behind the
project. The high- level description is intended to make it readable also for non-tool
experts.

Although the specification is based on long experience with HPC application
developers and how they tend to use performance tools, it is a blueprint that needs
to be validated in practice. This validation is planned for the last quarter of the
project at Moscow State University, once all the components are in place and, in
particular, LWM? has been fully completed, tested, and integrated into the overall
environment. During this validation process, some of the details presented in this
document may change and ultimately result in a new revision. We expect though
that all major elements will be retained.

Beyond the lifetime of the project, the HOPSA infrastructure is supposed to col-
lect large amounts of valuable data on the performance of individual applications
as well as the system workload as a whole. It will be of interest in three ways: to
tune individual applications, to tune the system for a given workload, and finally
to observe the evolution of this workload over time. The latter will allow the effec-
tiveness of our strategy to be studied. An open research issue to be tackled on the
way will be the reliable tracking of individual applications, which may change over
time, across jobs based on the collected data. In this way, it will become possible to
document the performance history of code projects and demonstrate the effects of
our tool environment over time.

Acknowledgements HOPSA is a coordinated twin project funded under FP7-ICT-2011-EU-
Russia grant number FP7-277463 and Russian Ministry of Education and Science contract num-
ber 07.514.12.4001. The authors also would like to thank our collegues working with us on this
project: Andrew Adinetz, Daniel Becker, Peter Bryzgalov, Jens Domke, Markus Geimer, Juan Gon-
zalez, André Grotzsch, Thomas Ilsche, German Llort, Christopher Schleiden, Konstantin Stefanov,
Zoltan Szebenyi, Igor Zacharov, Pavel Saviankou, Igor Ustinov, Vadim Voevodin, and Sergey Zhu-
matiy as well as the Paraver, Scalasca, and Vampir teams in general.

20 B. Mohr, V. Voevodin et al.

References

1. J. Labarta, S. Girona, V. Pillet, T. Cortes, L. Gregoris, DiP: A parallel program development
environment. in: Proc. of the 2nd International Euro- Par Conference, Lyon, France, Springer,
1996.

2. M. Geimer, F. Wolf, B.J.N. Wylie, E. brahm, D. Becker, B. Mohr: The Scalasca performance
toolset architecture. Concurrency and Computation: Practice and Experience, 22(6):702-719,
April 2010.

3. E. Berg, E. Hagersten: StatCache: A Probabilistic Approach to Efficient and Accurate Data
Locality Analysis. In: Proceedings of the 2004 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS-2004), Austin, Texas, USA, March 2004.

4. W. Nagel, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAMPIR: Visualization and Analysis
of MPI Resources. Supercomputer, 12(1):69-80, 1996.

5. D. an Mey, S. Biersdorff, C. Bischof, K. Diethelm, D. Eschweiler, M. Gerndt, A. Kniipfer,
D. Lorenz, A.D. Malony, W.E. Nagel, Y. Oleynik, C. Rossel, P. Saviankou, D. Schmidl, S.S.
Shende, M. Wagner, B. Wesarg, F. Wolf: Score-P: A Unified Performance Measurement System
for Petascale Applications. In: Competence in High Performance Computing 2010 (CiHPC),
pp- 85-97. GauB-Allianz, Springer (2012).

6. M. Gerndt and M. Ott. Automatic Performance Analysis with Periscope. Concurrency and
Computation: Practice and Experience, 22(6):736-748, 2010.

7. S. Shende and A. D. Malony. The TAU Parallel Performance System. International Journal of
High Performance Computing Applications, 20(2):287-331, 2006. SAGE Publications.

8. M. Geimer, P. Saviankou, A. Strube, Z. Szebenyi, F. Wolf, B. J. N. Wylie: Further improving
the scalability of the Scalasca toolset. In: Proceedings of PARA 2010: State of the Art in
Scientific and Parallel Computing, Part IT: Minisymposium Scalable tools for High Performance
Computing, Reykjavik, Iceland, June 6-9 2010, volume 7134 of Lecture Notes in Computer
Science, pages 463—474, Springer, 2012.

9. D. Eschweiler, M. Wagner, M. Geimer, A. Knpfer, W. E. Nagel, F. Wolf: Open Trace Format 2
- The Next Generation of Scalable Trace Formats and Support Libraries. In: Proceedings of the
International Conference on Parallel Computing (ParCo), Ghent, Belgium, 2011, volume 22 of
Advances in Parallel Computing, pages 481-490, IOS Press, 2012.

10. A. Kniipfer, R. Brendel, H. Brunst, H. Mix, W. E. Nagel: Introducing the Open Trace Format
(OTF), In: Vassil N. Alexandrov, Geert Dick van Albada, Peter M. A. Sloot, Jack Dongarra
(Eds): Computational Science - ICCS 2006: 6th International Conference, Reading, UK, May
28-31, 2006, Proceedings, Part II, Springer Verlag, ISBN: 3-540-34381-4, pages 526533, Vol.
3992, 2006.

11. F. Wolf, B. Mohr: EPILOG Binary Trace-Data Format. Technical Report FZJ-ZAM-IB-2004-
06, Forschungszentrum Jiilich, 2004.

12. H. Servat Gelabert, G. Llort Sanchez, J. Gimenez, and J. Labarta. Detailed performance anal-
ysis using coarse grain sampling. In: Euro-Par 2009 - Parallel Processing Workshops, Delft,
The Netherlands, August 2009, volume 6043 of Lecture Notes in Computer Science, pages
185-198. Springer, 2010.

13. T-Platforms, Moscow, Russia. Clustrx HPC Software. http://www.t-platforms.
com/products/software/clustrxproductfamily.html, last accessed Septem-
ber 2012.

14. A.V. Adinets, P.A. Bryzgalov, Vad.V. Voevodin, S.A. Zhumatiy, D.A. Nikitenko. About one
approach to monitoring, analysis and visualization of jobs on cluster system (In Russian). In:
Numerical Methods and Programming, 2011, vol. 12, Pp. 90-93

15. Z. Szebenyi, F. Wolf, B. J.N. Wylie. Space-Efficient Time-Series Call-Path Profiling of Parallel
Applications. In: Proc. of the ACM/IEEE Conference on Supercomputing (SC09), Portland,
OR, USA, ACM, 2009.

