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Abstract. The Scalasca toolset has successfully demonstrated measure-
ment and analysis scalability on the largest computer systems, however,
applications have growing complexity and increasing demands on per-
formance tools. One such application is the PEFLOTRAN code for simu-
lating multiphase subsurface flow and reactive transport. While PFLO-
TRAN itself and Scalasca runtime summarization both scale well, MPI
communicator management becomes critical for trace collection with
tens of thousands of processes. Re-design and re-engineering of key com-
ponents of the Scalasca measurement system are presented which en-
compass the representation of communicators, communicator definition
tracking and unification, and translation of ranks recorded in event traces.
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1 Introduction

Scalasca is an open-source toolset for analyzing the execution behavior of ap-
plications based on the MPI and/or OpenMP parallel programming interfaces
supporting a wide range of current HPC platforms [7,9]. It combines compact
runtime summaries, that are particularly suited for obtaining an overview of
execution performance, with in-depth analysis of concurrency inefficiencies via
event tracing and parallel replay. With its highly scalable design, Scalasca has
facilitated performance analysis and tuning of a range of applications and con-
sisting of unprecedented numbers of processes [17].

Experience with a growing number of HPC applications on leadership IBM
Blue Gene and Cray XT systems has shown that they often scale surprisingly
well to effectively exploit hundreds of thousands of processor cores [11]. Many
codes explicitly use MPI for communication and synchronization, whereas oth-
ers make extensive use of libraries that encapsulate MPI usage. An example of
the latter, the PFLOTRAN three-dimensional reservoir simulator [2] has fea-
tured prominently in the US Department of Energy SciDAC program, where it
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Fig. 1. Average simulation timestep durations reported by PFLOTRAN for Scalasca
trace experiments on IBM BG/P, with breakdown into ‘flow’ and ‘tran’(sport) phases,
compared to reference uninstrumented executions. Distortion in the trace with event
communication ranks translated to global ranks (G-trace) is avoided in the trace that
records the local ranks (L-trace).

has been used to simulate geologic COs sequestration and migration of radio-
nucleide contaminants in groundwater [8]. Recent measurement and analysis of
PFLOTRAN execution performance with a ‘petascale’ dataset on IBM BG/P
and Cray XT5 systems with Scalasca [16] identified significant performance op-
portunities in the application, but also several serious scalability issues with the
Scalasca measurement approach that needed to be resolved to produce viable
performance analyses. Figure 1 shows the strong scaling of PFLOTRAN sim-
ulation timesteps on the Jugene BG/P at Jilich Supercomputing Centre along
with corresponding time for Scalasca summary and trace experiments, including
breakdown of ‘flow’ and ‘tran’(sport) execution phases.

With the provided ‘2B’ test case, PFLOTRAN (via the HDF5 and PETSc
libraries) was found to create 18 copies of the MPI_COMM_WORLD global commu-
nicator and 4 copies of MPI_COMM_SELF on each process. For Scalasca runtime
summarization experiments, MPI communicators are ignored, however, for par-
allel trace analysis it is necessary to record communicator definitions and their
usage in MPI communication and synchronization event records (to allow com-
municators to be reconstructed and used in replaying trace events). The prior im-
plementation of communicator management proved to be inadequate, requiring
storage space and processing time that grew linearly or worse with the number



of processes, such that collection and analysis of large-scale PFLOTRAN traces
was not possible. Furthermore, dilation of application execution time during
trace collection was found to be severe for the ‘flow’ phase (as shown in Fig. 1)
due to the cost of translating local to global ranks.

To address these issues, we re-designed and re-engineered communicator man-
agement and representation for the Scalasca measurement system as described
in the remainder of this paper. We start our discussion in Sect. 2 with a review
of related work, followed by a description and analysis of the original commu-
nicator handling in Sect. 3. Section 4 then discusses the improved data layout
and algorithms in detail. Next, in Sect. 5, we show an experimental evaluation
of our approach with respect to various key metrics, before concluding the paper
in Sect. 6.

2 Related Work

The data that a measurement tool needs to collect and store depends on the
analyses that are intended. Even for tools serving similar purposes, communi-
cator management and rank translation can be done very differently, as demon-
strated by a brief survey of current open-source software releases. mpiP-3.3 [10]
doesn’t use communicator recording or rank translation since it doesn’t distin-
guish these in its profile analysis. Periscope-1.3.2 [13] similarly doesn’t need to
store communicators or translate ranks for its on-line communication analysis.
FPMPI-2.1g [3] profiles do provide a matrix of point-to-point communication
sources and destinations, however, only in terms of local ranks without distin-
guishing communicators. For its communication matrix TAU-2.20.2 [15] trans-
lates point-to-point source and destination ranks to global ranks during mea-
surement, and it can also distinguish by communicator. Translated ranks also
appear in TAU traces of point-to-point communications, but not for the roots
of collective communications, which is also the approach adopted by Extrae-
2.1.1 [5]. While communicators are distinguished, the communicator composi-
tion is neither recorded nor part of their analysis. VampirTrace-5.11 [12], like
the Scalasca predecessor from which it derives, translates ranks of both point-
to-point and collective communication events. These tools convert local to global
ranks using the standard provided MPI_Group_translate_ranks routine as com-
munication events are handled during measurement, with shortcuts to avoid un-
necessary rank translation for communicators that are identical or congruent to
MPI_COMM_WORLD. In comparison, the MPE logger provided with MPICH2-1.4 [4]
writes traces entirely with local (untranslated) ranks, which are translated when
traces are read using communicator rank mappings recorded separately for each
communicator and rank.

4 Notably the amount of trace event data collected, which is often an impediment,
was not a limitation for Scalasca in this case.



3 Original Scalasca Scheme

In the original scheme used by Scalasca, each MPI group and communicator
was represented by a bitstring where bit ¢ indicates whether the global rank
is part of the group or communicator (=1) or not (=0). Additional fields in the
record distinguished between the two types (i.e., group or communicator) and
assigned a process-local numerical identifier used by communication events to
refer to this definition. As such, multiple distinct communicators required the
storage of the full bitstring, even if they comprise the same group of processes.
Each PMPI wrapper function creating a new group or communicator deter-
mined this bitstring by calling MPI_Group_translate_ranks to map the group
or the group of the newly created communicator, respectively, onto the group of
MPI_COMM_WORLD and then setting the corresponding bits. Since in this scheme
communicators are defined in terms of global ranks, all events generated for MPI
communication operations need to use global rank information as well to allow
for a proper determination of sender, receiver or collective root processes. This
required another call to MPI_Group_translate_ranks in the PMPI wrapper of
each communication function to convert the local rank in the communicator pro-
vided as arguments into the corresponding global rank, unless the communicator
is MPI_COMM_WORLD (i.e., the ranks are already global).

To establish a global view, these per-process communicator definitions were
“unified” at the end of measurement. That is, communicator definitions from
different processes were merged to create a unique set of global communicator
definitions, requiring some complicated logic to correctly distinguish between
multiple copies of a communicator. Moreover, a per-process mapping from local
to global communicator identifiers was created, which could be applied to the
corresponding identifiers stored in the communication events while reading the
trace data.

Although this solution works reasonably well for small scale measurements,
its drawbacks became evident at scale. The O(p) storage requirements for each
local definition mean that a significant amount of memory is already required at
measurement time. In particular, the bitstring representation is extremely bad
for MPI_COMM_SELF and duplicates since only a single bit is set. Moreover, the
amount of data to be processed during unification is O(p?). While algorithmic
improvements in the unification process using a hierarchical scheme [6] success-
fully parallelized the work, the reduction of the overall workload needed further
attention. Since the bitstring for MPI_COMM_SELF is different on every process,
no merging is possible during unification, leading to O(p?) storage requirements
for their global definitions. And finally, the bitstring records are also created for
every duplicate of a communicator, leading to a lot of redundancy for applica-
tion codes such as PFLOTRAN, quickly resulting in gigabytes of communicator
definition records, such that trace analysis was not possible for more than 48k
processes. Along with the quadratic growth in size, unification times of the orig-
inal implementation were also unacceptable as seen in Fig. 2.

Times reported by PFLOTRAN for summary and trace collections employ-
ing runtime filters on Jugene IBM BG/P compared with reference times from
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Fig. 2. Time to unify PFLOTRAN identifier definitions (and write them to disk with
associated mappings for each process) on Jugene IBM BG/P and Jaguar Cray XT5,
comparing original and revised Scalasca implementations.

the uninstrumented executions in Fig. 1 show that measurement dilation is gen-
erally acceptably small, apart from trace collection with larger configurations of
processes. Whereas on Jaguar Cray XT5 the dilation is only significant for ‘flow’
at 128k processes (not shown), it is much more pronounced in measurements
on Jugene IBM BG/P for even 16k processes and for 128k processes grows to a
factor of seven! This difference can be attributed to translations of communica-
tion partner/root process ranks (from the local rank in the MPI communicator
to the global rank in MPI_COMM_WORLD) in every communication operation event
recorded, and the relative speeds of computation and communication on both
systems.

The cost of the MPI standard routine MPI_Group_translate_ranks pro-
vided for this conversion increases with the size of the communicator, however,
it also depends on the rank(s) being translated with the worst-case cost that
for the largest rank. On Jugene BG/P with 128k processes, translation of the
largest rank in MPI_COMM_WORLD takes 3.0ms on average.” While this is small
compared to the time for collective operations like MPI_Comm_dup (84 ms for
MPI_COMM_WORLD at this scale), it is much larger than typical point-to-point
communication operations. Even more insidious, the variable cost according to
the partner rank results in severe distortion of the measurement.

5 On Jaguar Cray XT5 with 128k processes the average translation time is 1.0 ms.



4 Communicator Management during Trace Collection

To address the scalability limitations described in the previous section, commu-
nicator management in Scalasca was completely re-designed. In the following,
we present the solutions we have implemented with respect to scalable commu-
nicator tracking, unification and representation.

4.1 Distributed Communicator Tracking

Instead of determining and storing the whole group information on communica-
tor creation on each process at measurement time, we developed a distributed
communicator tracking scheme requiring very little memory and allowing the
efficient reconstruction of the global communicator information at the end of
measurement.

In the distributed tracking scheme, each process stores a record with a glob-
ally unique pair of integers as a key, the process-local identifier of this commu-
nicator used by the event records referring to it, the process’ local rank within
the communicator, and its size. The 2-tuple used as key is the foundation for the
efficient reconstruction of the global communicator structure. It needs to be glob-
ally unique to detect which distributed partial definition records build a global
communicator record. The local identifier alone cannot provide this, as it merely
represents the information that this record belongs to the ith locally defined
communicator. However, different processes can define different communicators,
giving this identifier a purely local meaning.

To build these unique keys, each process keeps a state variable during mea-
surement to count the number of communicators where this process was rank
0. For improved readability, we will henceforth write that a process p defines a
communicator record when it is the process with rank 0 in the corresponding
communicator. As the value of this counter is strictly increasing on each rank,
and the global rank of the defining process is unique, the combination of those
two values forms a unique key for each communicator. Also, both values can be
determined during measurement at very low cost.

In principle, each process participating in a newly created communicator
can determine the global rank of the defining process by mapping local rank
zero onto the group of MPI_COMM_WORLD using MPI_Group_translate_ranks.
However, the local state variable of this process is unknown to all but the defin-
ing process and needs to be distributed. For simplicity, we avoid the call to
MPI_Group_translate_ranks and use a broadcast on the new communicator
with the defining process as the root, sending its global rank as well as the afore-
mentioned count. The defining process increments its counter after the broadcast,
as its counter value has now been used for the new entry. Since communicator
creation is a collective operation — and we are not aware of any MPI imple-
mentation not synchronizing all of the participating processes — the additional
overhead for this communication operation is negligible.



4.2 Unification of Definition Identifiers

As mentioned before, each process assigns a local numerical identifier to each
communicator it is part of. This identifier is used in event records referencing
communicators (such as sending or receiving a message), later being translated
into a global identifier using a per-process mapping table during analysis.

In the final communicator definition record stored with the trace, the dis-
tributed entries created during measurement have to be combined. During this
stage the unique 2-tuple key needs to be transformed into the global identifier of
the communicator. Here, we need special handling for MPI_COMM_SELF-like (i.e.,
single-process) communicators, which get added to the global list of communica-
tors after applying the unification algorithm presented below. In the remainder
of this section, we therefore only refer to multi-process communicators.

For those, we assign strictly increasing values to the communicator records,
starting from 0 with the first communicator defined by rank 0, which in any case
will be that of MPI_COMM_WORLD. All communicators defined by rank 0 will get
assigned to the next available identifiers, until the same process is performed
with all other communicators and ranks. To facilitate the unique numbering, we
use a single exclusive prefix reduction where each process provides the number of
communicators it defined. The resulting value on any process k then denotes the
number of communicators defined by processes with a rank lower than k. This
information is then distributed to every process using MPI_Allgather. With
this knowledge, local counter values initially used in the tuple can be shifted by
the offset of the corresponding defining process, making them globally unique.
The resulting record therefore already enables the mapping of local to global
communicator identifiers.

The next step assembles the list of global ranks for each process participating
in a communicator. First, the total number of multi-process communicators ¢
is broadcast to every process. This value is a by-product of the earlier prefix
sum, requiring only one addition on the process with the highest rank number.
Finally, we perform c gather operations, where each process provides either its
local rank, if it was part of the specific communicator, or —1 to denote that it
was not. The root can then assemble the list of processes by extracting them
from the gathered values.

In total, our new distributed communicator tracking scheme has a local mem-
ory requirement of @(1) per communicator per process during measurement, and
can be unified and consolidated with O(c - logp) communications.

4.3 Representation of Communicators

To eliminate the inherent redundancy of the original communicator storage
scheme for duplicates, we adopted the approach taken by the MPI standard
of separating groups and communicators. In the revised scheme each group is
therefore stored only once, potentially being referenced by multiple communica-
tor definition records. These now only consist of two integers, a global commu-
nicator identifier and the global identifier of the associated group definition.



Moreover, we no longer represent groups as bitstrings, but rather as an or-
dered list of integers where the entry at position ¢ stores the rank in the group of
MPI_COMM_WORLD of rank ¢ in the local group. The global rank of a process can
then always be reconstructed by a simple table lookup at the corresponding entry
in the communicator’s group. Also, the memory representation of this rank list
is much more compact than the bitstring for sparsely populated communicators.

Special flags are also included in the group record for groups corresponding to
the standard MPI communicators, MPT_COMM_SELF and MPI_COMM_WORLD. This
provides an obvious space saving for the ubiquitous world-group record, but
more importantly the generic self-group record avoids proliferation of distinct
records for each rank. Compact representations for other MPI groups have been
investigated by others (e.g., [14]) and may be considered in future work.

4.4 Rank Translation

Since PFLOTRAN only uses duplicates of the MPI standard communicators,
for which rank determination is trivial, it would be straightforward to incorpo-
rate special handling for this case. Unfortunately, applications using general MPI
communicators would not benefit. However, the new storage scheme of groups
and communicators allowed us to use local ranks in communication events (as
the global rank can always be reconstructed, if necessary). Although it required
changing the trace file format, this unnecessary translation overhead during mea-
surement has therefore been eliminated. Trace reading also needed to be adapted,
however, parallel event replay required untranslated ranks in communicators in
any case, so analysis performance is not degraded.

5 Evaluation

The effectiveness of avoiding rank translation for every communication event
during Scalasca trace measurement is evident in Fig. 1, which compares the
PFLOTRAN ‘flow’ and ‘tran’ phase execution times on BG/P when ranks are
globalized (G-trace) versus when they remain local ranks (L-trace). With the
new communicator management traces are now collected with minimal dilation
as formerly only possible for runtime summarization experiments.

Although communicator definitions are now much more compact, total trace
sizes, and the associated storage for buffering event records during measurement,
remain essentially unchanged with the new scheme. For the 4.0 TB event trace
from 128k processes, unification now takes only 6.7 seconds to produce 10.4 MB
of global definitions and 242.9 MB of mappings. Focusing on communicator def-
inition records only, the records for 48k processes executing PFLOTRAN orig-
inally exceeded 1.4 GB, and were consequently too large for the Scalasca trace
analyzer to handle, whereas the new records for 128k processes present no such
problem. Figure 3 shows the trace analysis for an execution with 64k processes
revealing the distribution of MPI communication and synchronization waiting
times that complement the application’s inherent computational imbalance [16].
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Fig. 3. Scalasca analysis report explorer showing timestep loop extract of PFLOTRAN
trace experiment with 64k processes on BG/P. MPI communication and synchroniza-
tion waiting time metrics selected in the left pane correspond to over 10% of the total
time. The central pane shows PETSc SNESSolve_LS line search solver calls employed in
the flow and transport phases are responsible for 99% of this, whereas the distribution
of waiting times for the 64k processes in the right pane reveals that it complements
the application’s inherent computational load imbalance.

6 Conclusion

For trace collection and analysis of the PFLOTRAN application at large scale,
Scalasca management of MPI communicators needed to be comprehensively re-
engineered. Eliminating the translation to global ranks of communicator ranks
of partner and root processes in communication operations to avoid associated
measurement dilation also motivated more efficient tracking and storage of com-
municator specifications required for message replay during analysis. With the
revised implementation, formerly impossible trace analysis with 128k and more
processes has now been achieved. Small extensions are under investigation for
the rare applications using MPI inter-communicators. The new communicator
management scheme has also been contributed to the open-source Score-P mea-
surement system [1] being developed for the next generation of the Scalasca,
Periscope, TAU and Vampir performance tools.
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