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ABSTRACT
Parallel applications often store data in multiple task-local
files, for example, to remember checkpoints, to circumvent
memory limitations, or to record performance data. When
operating at very large processor configurations, such ap-
plications often experience scalability limitations when the
simultaneous creation of thousands of files causes metadata-
server contention or simply when large file counts complicate
file management or operations on those files even destabi-
lize the file system. SIONlib is a parallel I/O library that
addresses this problem by transparently mapping a large
number of task-local files onto a small number of physi-
cal files via internal metadata handling and block alignment
to ensure high performance. While requiring only minimal
source code changes, SIONlib significantly reduces file cre-
ation overhead and simplifies file handling without penal-
izing read and write performance. We evaluate SIONlib’s
efficiency with up to 288 K tasks and report significant per-
formance improvements in two application scenarios.

1. INTRODUCTION
Driven by a rising demand for more computing power and
accelerated by current trends in microprocessor design to-
wards multicore chips, the number of processor cores on
modern clusters and supercomputers is growing rapidly from
generation to generation. While more than three quarters
of the TOP500 systems employ at least two thousand cores,
some machines at the top employ even more then a hundred
thousand. With higher degrees of parallelism, efficient par-
allel file I/O becomes increasingly important, as file I/O can
have a substantial impact on the overall application perfor-
mance.

While offering optimizations for a variety of file access pat-
terns, the particular strength of parallel file systems, such as
GPFS [3, 8], Lustre [15, 16], and PVFS [20], is to provide ef-
ficient concurrent access to a single file via file striping across
multiple disks and replicated I/O servers. However, due to
historic file-system limitations, many applications still use
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one of the following two traditional approaches for parallel
I/O, which may both adversely affect scalability [14].

The first method is called single-file sequential and uses one
designated I/O task to access a single file on behalf of all
others. While it works well on shared memory architectures,
on machines with distributed private memory it typically
requires gather and scatter operations to collect data from
and distribute them to multiple tasks, respectively. In this
scenario, file I/O is serialized and the bandwidth limited to
what a single node can support. Since the designated I/O
task has only limited memory capacity, multiple gather or
scatter operations may be required while writing or reading
the file incrementally, reducing the access performance even
further. This method is often chosen when the different tasks
own non-contiguous portions of the file, which can then be
written in one large chunk.

In contrast, in the multiple-file parallel approach, which is
often applied in message-passing programs, every task ac-
cesses its own file. This method is popular for storing task-
local data such as restart (checkpoint) and scratch files or
performance measurements, where the data belonging to in-
dividual tasks can be clearly separated. This is also why
we refer to this type of I/O pattern as parallel I/O to task-
local files. While offering performance advantages if the files
reside on local disks, this method may not scale to tens of
thousands of tasks in a shared file-system environment with-
out local disks, which today’s densely packed supercomputer
architectures typically lack. Scalability problems of this ap-
proach may arise in the following two ways:

First, trying to create tens of thousands of files simulta-
neously in the same directory may be serialized due to con-
tention at metadata servers. For example, on one of our test
systems described later in this article, the parallel creation of
256 K files can take more than 30 minutes. Writing the files
to separate directories is usually not a viable alternative, as
it only shifts the problem to creating the directories. Albeit
less expensive in terms of compute time, creating the files
beforehand is inconvenient and requires maintaining some
of the I/O functionality of an application separate from the
main code. A script to generate the files during a preceding
serial job would have to know their number, names, and lo-
cations, necessitating some form of agreement between the
application and the script.

Second, even if such a separation can be tolerated, large
numbers of files severely complicate file management tasks.
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For example, copying files to a tape archive (e.g., during
backup) may be significantly slowed down. Especially when
archival requests from different users are executed in an in-
terleaved fashion, different files of the same directory may
end up on different tapes, making their later retrieval chal-
lenging or even impractical if the tape cartridge has to be
exchanged too often. Merging all of the files into a single
file during a postprocessing step, for example using the tar
command, also has its disadvantages both in terms of the
time needed to perform the operation and the at least tem-
porary duplication of the required storage space. Moreover,
administering directories with tens of thousand of entries
without support for group operations and automated filter
tools appears ineffective. In addition to the increased com-
plexity of managing large numbers of files, our experiences
suggest that large-scale file operations can cause side effects
including temporary service disruptions that are noticeable
by arbitrary users and that can jeopardize the stability of
the overall system. To avoid such phenomena, some envi-
ronments impose limits on the total number of files a user
or a group of users can have, offering another good reason
not to use one physical file per task.

In this paper, we present an approach to allow applications
with task-local parallel I/O, many of which naturally use
multiple physical files, to take better advantage of paral-
lel file systems. This is achieved by transparently mapping
a large number of task-local logical files onto a single or a
few physical files, solving both of the problems listed above.
Our solution, which is implemented in an I/O library called
SIONlib extending the ANSI C file I/O API, offers the fol-
lowing advantages:

• Simultaneous file creation becomes faster by orders of
magnitude.

• Only minimal source-code changes are required, which
mostly affect open and close operations. Metadata de-
scribing the extent and location of individual logical
files are managed transparently.

• The read and write bandwidth remains unaffected.
The alignment of logical files to file-system block
boundaries avoids contention between any two logical
files and ensures good bandwidth utilization.

The remainder of the paper is structured as follows. In Sec-
tion 2, we review related work and explain why our solution
is preferable for addressing the specific scenario introduced
above. Then, we outline the SIONlib architecture in Sec-
tion 3 with an emphasis on the organization of metadata, the
programming interface, and operations on multifiles. In Sec-
tion 4, we present a quantitative evaluation of SIONlib using
up to 288 K tasks on two different machines and file systems.
Subsequently, we demonstrate performance improvements in
two real-world application scenarios in Section 5, including
the checkpointing mechanisms of a simulation code and the
tracing library of a performance tool. Finally, we draw our
conclusion and discuss future perspectives in Section 6.

2. RELATED WORK
To make parallel I/O most efficient, knowledge of access
patterns can be exploited to optimize the data flow between
applications and disks, utilizing the parallelism available on

hardware and software layers in between. The most promi-
nent example of a platform-independent interface support-
ing parallel binary I/O is MPI I/O [17]. Using this library,
data can be written collectively from all or a subset of the ap-
plication tasks to a shared file, potentially taking advantage
of hints including the number of disks to stripe files across,
the stripe depth, or access patterns. Noteworthy is also
MPI’s support for shared I/O of non-contiguous distributed
data. Every task can specify a non-contiguous view of a
shared file, greatly simplifying the work with fined-grained
data distribution schemes. Besides these more advanced fea-
tures, MPI also offers all of the mechanisms needed to per-
form I/O in the traditional way, either following the single-
file-sequential or multiple-file-parallel approach. While of-
fering high-level functionality for strided and irregular ac-
cess patterns, a transparent mapping of many logical task-
local files onto few physical files is not directly supported,
although it could be implemented using MPI I/O functions
as lower-level routines. However, this would force the appli-
cation to use MPI data types and an MPI-style programming
interface, unnecessarily restricting the generality of our ap-
proach and potentially entailing more complex source-code
changes in the application than needed. In this sense, we
regard MPI I/O as orthogonal to our method.

Whereas MPI including its I/O substandard models data in
terms of type maps, that is, as a list of basic data types
placed at specific locations in an address space, high-level
parallel I/O libraries, such as HDF5 [7] and NetCDF-4 [18],
allow the reading and writing of data in terms of structured
data models including annotated multidimensional arrays
of typed elements and hierarchical groups of objects. The
two libraries also store metadata describing the specific data
format in addition to the actual data to facilitate easy shar-
ing of files. Both libraries support the parallel reading and
writing of their data sets, internally leveraging the MPI I/O
layer. Whereas high-level parallel I/O libraries are useful for
storing and retrieving structured scientific data, SIONlib is
more suitable for binary stream data without any predefined
structure. Similar to MPI I/O, using one of the high-level li-
braries instead of SIONlib would increase the transition cost
by having to move to a more complex interface while offering
no obvious performance advantages. Specifically, the need
to define data structures before starting the actual I/O rep-
resents an extra burden for applications such as tracing tools
that already use self-contained binary file formats.

Furthermore, ADIOS [13] provides an abstraction layer on
top of various standard I/O interfaces ranging from low-level
APIs such as simple POSIX I/O to MPI I/O and parallel
higher-level APIs including the ones discussed above. Using
this additional layer, an application can be easily configured
to replace the underlying I/O transport method simply by
modifying an XML configuration file. This improves flex-
ibility when porting a code from one platform to another.
Moreover, the data-group feature allows the selection of in-
dividual transport methods for different parts of the code to
optimize the performance for a variety of file access patterns
within the same application. In this context, SIONlib could
serve as a further transport method to choose, further ex-
panding the versatility of ADIOS. In fact, the ADIOS native
binary file format employs concepts related to those under-
lying the design of the SIONlib format. First, it allows the



definition of process groups. A process group is the entire
self-contained output from a single process that can be writ-
ten independently into a contiguous disk space [10]. Second,
a footer index ensures that the data section can grow beyond
what is known at file creation time without moving data.

To optimize two-phase implementations of MPI collective
I/O operations, Liao et al. [12] proposed dynamic file par-
titioning techniques that align the file domains assigned to
aggregator processes with file-system lock boundaries. This
helps avoid serialization through lock conflicts when multiple
aggregator processes want to write in parallel and is simi-
lar in spirit to the block alignment used in SIONlib, only
that SIONlib application processes write directly to the file
without rearranging the file access pattern via aggregator
processes.

Scalable operations on whole groups of files are defined by
TBON-FS [2], a virtual file system that allows a client to ef-
ficiently communicate with a group of files via a tree-based
multicast-reduction network. Extending familiar file-access
idioms including file descriptors to groups, TBON-FS spe-
cializes in scalable operation request distribution and the ag-
gregation of group file operation responses. Although mak-
ing group operations more convenient by eliminating itera-
tion across all group members, TBON-FS still operates on
a potentially large number of physical files.

It remains an intriguing question why parallel systems them-
selves often do not provide better support for task-local I/O.
According to our experiences, the main problem is not the
aggregate bandwidth but the metadata-server contention
that occurs when attempting to create large numbers of files
in a single directory. Although the use of hashing to look up
the file-system block designated for a certain directory entry
brought some improvements [4, 22], the concurrent access to
the file system blocks that contain the directory i-node more
or less serializes this operation. SIONlib can handle this sit-
uation better only because it relies on superior knowledge
of the intended access pattern, as we will see in the next
section.

3. SIONlib
The objective of SIONlib is to make massively parallel I/O
to task-local files such as checkpoints, scratch files, or log
files more efficient. The basic concept of SIONlib is illus-
trated in Figure 1. Situated as an additional software layer
between a parallel application and the underlying parallel
file system, the main idea of SIONlib is to map a large col-
lection of logical task-local files onto a single physical file
(or at least a small number of files). This avoids contention
at metadata servers during file creation without penalizing
read and write bandwidth and simplifies file management
operations such as listing a directory or copying the entire
collection to a tape archive. In this sense, SIONlib can be
thought of as a very simple application-level file system with
an API and command-line utilities to access individual log-
ical files. The programming interface of SIONlib is laid out
as an extension of the ANSI C I/O interface, requiring only
very few source code changes for applications already using
ANSI C. Existing standard ANSI C read and write calls can
be retained and the conversion of ANSI C file handles to
numerical file descriptors for subsequent use in POSIX I/O

calls remains possible. To allow parallel codes written in
Fortran to take advantage of our library, a Fortran language
mapping is supplied in addition to the C API. Although by
design not tied to a specific parallel programming interface,
the current version of SIONlib uses MPI for internal meta-
data exchange, which makes it particularly suitable for MPI
codes. To meet its objectives, our approach exploits the fol-
lowing assumptions about the intended file access pattern:

• All task-local files can be created at the same time.

• Every file is accessed by only one task.

In addition, the maximum amount of data that may be writ-
ten or read in one piece (i.e., in a single write or read call)
by each individual task must be known in advance, at least
if standard ANSI C read and write calls are to be used. In
many cases, this limitation can already be addressed simply
by choosing a generous maximum that can accommodate all
foreseeable data sizes of a given application. To circumvent
this restriction in a more systematic fashion, SIONlib offers
its own version of read and write functions for binary data.
Versions for formated text can be constructed in a similar
way and will be provided in future versions of our library.
Extrapolating from our experiences with the case studies
presented in Section 5, we believe that the above assump-
tions are realistic for a broad range of applications, which
could potentially benefit from using SIONlib.
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Figure 1: Basic concept of SIONlib: A large num-
ber of logical task-local files is mapped onto a single
physical file (or a small set of physical files), which
is called a multifile. The multifile can be accessed
both from a parallel and a serial application.

In the following, we explain the SIONlib file organization
including the management of metadata, the programming
interface to access task-local files in parallel, and a set of
serial command-line utilities to perform operations including
metadata dumping, defragmentation, and file splitting.

3.1 File Organization
We motivate the SIONlib file organization step by step,
starting from a very simple layout and refining it as we dis-
cuss new features. In the simplest case, the maximum (total)
size of each individual task-local file is known in advance and
they are all mapped onto a single physical file, which we call
a multifile. The multifile is divided into so-called chunks,
one for each task, as depicted in Figure 2(a). The size of
each chunk corresponds to the maximum size requested by
the task owning the chunk. The array of chunks is preceded
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(c) Chunks are aligned with file system block boundaries.
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(d) Chunks are distributed across more than one physical file.

Figure 2: SIONlib file organization.

by a metadata block that specifies the start address of each
chunk. Multifile creation is a collective operation, during
which all tasks send their requested chunk size to a master
task that is responsible for writing the metadata block and
returning the individual start addresses to each task so that
each of them knows where its reserved chunk begins. The file
is closed via another collective operation, during which the
master collects the number of bytes from each task that was
effectively written and stores it in the metadata block. The
close operation is again collective to avoid the inefficiency of
having all tasks write to the metadata block concurrently.

However, the need to know the total amount of data writ-
ten by each task may be too restrictive, as this knowledge is
often not available when creating the files. Instead of know-
ing the total amount, we thus merely assume to know the
maximum amount of data written in one piece by each task,
leading to the layout depicted in Figure 2(b). The multifile
is now organized in blocks with each block containing one
chunk per task. If a task wants to write more bytes than left
in the current chunk, it can request a new chunk of the same
size. To ensure that every task knows the start address of
every subsequent chunk allocated on its behalf without the
need to communicate among tasks, an entire new block is

allocated with a full array of chunks, again one for each task.
Note that this may create substantial gaps in the multifile if
only a subset of the tasks asks for additional chunks. How-
ever, since file systems tend not to physically allocate the
empty blocks occurring in this scenario, the largest portion
of these gaps exists only on the logical level. To avoid their
later physical materialization, for example, when the multi-
file is copied in a certain way, the file can be defragmented
in a postprocessing step (see Section 3.3). As we now need
to store metadata indicating the space used in each chunk
without knowing the total number of blocks (and chunks)
in advance, we write the number of chunks per task and the
space occupied by data in each of them to a second metadata
block at the end of the multifile. Note that appending data
to a multifile beyond the initially allocated space after it has
been closed would require updating and moving the second
metadata block. Although such a feature is currently not
supported, adding it would not pose a fundamental design
problem.

Having solved the problem of allocating sufficient file space
to each task, we now need to make sure that every task can
efficiently access its own portion of the file. Although there
is no overlap between the chunks belonging to any two tasks,



adjacent chunks may nonetheless occupy parts of the same
file-system block. With write locks being assigned at the
granularity level of file-system blocks, this may cause lock
contention when writing to those chunks. The situation is
similar to the false sharing of cache lines in a multiproces-
sor. To avoid this performance-degrading side effect, the
chunks are aligned with file-system block boundaries, and
to avoid unnecessarily wasting space, the chunk size is cho-
sen as a multiple of the file-system block size, as shown in
Figure 2(c). Note that the block size of the target file system
is determined automatically via the fstat() system call.

Our experiences suggest that in some environments using
just a single physical file to store all logical task-local files
may leave some of the hardware or software parallelism un-
used that is available between the application and the disks.
For this reason, SIONlib also offers the option of distributing
the logical files across a user-defined number of physical files
(see Figure 2(d)). Every task is still mapped onto a single
physical file, but two tasks may now end up being mapped
onto different physical files. In the remainder of the paper,
the term multifile refers to the entire collection of underlying
physical files if multiple physical files are used. In addition
to the number of physical files, the user can also influence
the exact mapping of application tasks to physical files, for
example, to allocate one physical file per I/O node on Blue
Gene if desired.

3.2 Application Programming Interface
The SIONlib API is designed as an extension of the ANSI C
file I/O API, demanding only very little source-code changes
for applications that already use ANSI C I/O to write multi-
ple task-local files in parallel. In the simplest case, changing
the application to write a SIONlib multifile only requires
replacing the open and close calls, as we will see below.
Multifiles with multiple underlying physical files are handled
transparently. SIONlib supports the following four modes of
accessing a multifile:

• Parallel write

• Parallel read

• Serial write

• Serial read

3.2.1 Parallel write
This mode is the default mode when writing logical task-
local files from a parallel application. Both open and close
calls are collective operations (Listing 1). The open call
takes the chunk size (i.e., the maximum number of bytes
expected to be written in one piece) as a parameter, which
can be individually chosen for each task. The global com-
municator gcom includes all of the tasks for which a logical
file needs to be created. The local communicator lcom de-
fines a subset of the tasks that share the same underlying
physical file. The operation returns two file handles: (i) a
normal ANSI C file handle to the task-local file to be used
in subsequent ANSI C write operations just as though the
logical file were a physical file and (ii) a SIONlib file handle
to be used in subsequent calls to the SIONlib API. The call
to sion_ensure_free_space() is only needed if the num-
ber of bytes to be written may exceed the available space in
the current chunk so that a new chunk must be allocated.

In this case, the file pointer is advanced to the start of the
new chunk. Writing the data itself then occurs via a call
to fwrite(), as if writing to a physical task local file. If
a need arises to write more bytes than a single chunk can
accommodate, the combination of ensuring free space and
writing the data should be replaced with a single call to
sion_fwrite(). This splits the data internally into smaller
pieces so that chunk boundaries are observed. In this way,
the above-mentioned restriction of having to know the max-
imum amount of data written in one piece can be relaxed. If
the use of POSIX write() is preferred to ANSI C fwrite(),
the ANSI C file handle can be converted into a numerical
file descriptor as usual. In addition, all three options can
be mixed freely. This applies to the other multifile access
modes accordingly.

/∗ open collective ∗/
sid=sion_paropen_mpi( ... ,&chunksize,

gcom,
&lcom,
&fileptr, ...);

/∗ write non−collective ∗/
sion_ensure_free_space(sid, nbytes);
fwrite(data, 1, nbytes, fileptr);
/∗ or ∗/
sion_fwrite(data, 1, nbytes, sid);

/∗ close collective ∗/
sion_parclose_mpi(sid);

Listing 1: Parallel write.

3.2.2 Parallel read
Reading the multifile in parallel is similar to writing it (List-
ing 2). Again, open and close are collective operations,
whereas the actual reading can occur in isolation. A call
to sion_feof() ensures that the end of the file has not yet
been reached. Like in the previous case, the user has two
choices: either (i) reading within the limits of the current
chunk using fread(), with the limit being enforced by a
preceding call to a SIONlib guard function to identify the
number of bytes left in the chunk, or (ii) reading without
limit using the customized read function sion_fread().

/∗ open collective ∗/
sid=sion_paropen_mpi( ... ,&chunksize,

gcom,
&lcom,
&fileptr, ...);

/∗ read non−collective ∗/
if (!sion_feof(sid)) {
btoread=sion_bytes_avail_in_chunk(sid);
bread=fread(localbuffer, 1, btoread, fileptr);
/∗ or ∗/
sion_fread(localbuffer, 1, nbytes, sid);

}

/∗ close collective ∗/
sion_parclose_mpi(sid);

Listing 2: Parallel read.

3.2.3 Serial write
In addition to writing a multifile from a parallel application,
the programming interface also offers functions to write a
multifile from a serial application (Listing 3), a necessary



prerequisite to build serial postprocessing tools. Since the
open call is now executed by only one process, a whole ar-
ray of chunk sizes needs to be supplied as a parameter. The
sion_seek() call helps to navigate within the multifile, al-
lowing the user to conveniently locate a specific position
within a given chunk of a given task (i.e., rank).

sid=sion_open( ..., &chunksizes, &fileptr);

sion_seek(sid, rank, chunk, pos);
sion_ensure_free_space(sid, nbytes);
fwrite(..., fileptr);

sion_close(id);

Listing 3: Serial write.

3.2.4 Serial read
Serial reading can happen either with a task-local or a global
view. The local view is convenient for extracting the por-
tion belonging to a single task only, whereas the global view
is needed to read the data of all tasks, for example, when
calculating global statistics. To open a multifile in the local-
view mode, the rank of the task is supplied as an argument
to the open operation (Listing 4). The actual reading is
done in the same way as in the parallel case.

sid=sion_open_rank( ..., rank, &fileptr);

/∗ reading like in the parallel case ∗/

sion_close(sid);

Listing 4: Serial read with task-local view.

If a multifile is opened in the global-view mode (Listing 5),
the user usually first needs to retrieve all of the metadata
to learn about the number of tasks (i.e., ranks), the number
of chunks per task, and the chunk sizes used by individual
tasks, etc.. Using the metadata information, a meaningful
seek target can be chosen as starting point for a subsequent
read operation.

sid=sion_open( ...,&fileptr);
sion_get_locations(sid, ...,

&nrranks,
&nrchunks,
&chunksizes,
...);

sion_seek(sid, rank, chunk, pos);
fread(..., fileptr);

sion_close(sid);

Listing 5: Serial read with global view.

3.2.5 Fortran interface
Taking into account the fact that numerous scientific codes
are written in Fortran, we also provide a Fortran language
mapping in addition to the C API to make SIONlib more
widely applicable. The Fortran interface essentially mirrors
the C interface with the exception that read and write oper-
ations must use the SIONlib functions, potentially requiring
slightly more source code changes.

3.3 Command-Line Utilities
The current version of SIONlib provides three command-line
utilities to analyze, split, and defragment multifiles.

• The dump tool prints the multifile metadata to the
standard output. This is a convenient way to learn
more about the structure of the multifile to see, for
example, how many logical files it contains and how
large they are.

• The split tool extracts all or only distinct logical files
from a given multifile and recreates the corresponding
physical files.

• The defragment tool generates a new multifile from an
existing one, contracting all of the blocks into a single
block, that is, the new file contains only one chunk per
task with the data from all chunks of this task found
in the input file. In addition, all gaps in the form of
unused file-system blocks are removed.

4. QUANTITATIVE EVALUATION
In this section, we evaluate the efficiency of our approach
by measuring the time needed for basic file operations, also
comparing parallel I/O to physical task-local files against the
logical file mapping provided by SIONlib. After underlining
our claim that parallel I/O to physical task-local files does
not scale to large numbers of tasks, we examine SIONlib’s
performance under the influence of different parameters. All
of our measurements were performed on the two systems
described below.

Jugene. An IBM Blue Gene/P system located at the Jülich
Supercomputing Centre in Germany [11]. Each of the 72
racks has 1024 compute nodes containing a 4-way SMP 32-
bit PowerPC 450 with a clock rate of 850 MHz. The to-
tal number of cores is 294,912 and the overall peak perfor-
mance is 1003 teraflops. The 608 I/O nodes are connected
via 10GigEthernet to a file server running GPFS Version
3.2.1 and consisting of 12 IBM p570 Power6 8-way SMP
nodes. The server offers access to a SAN-attached disk ca-
pacity of 1.1 PB. The maximum bandwidth to the scratch
file system where we conducted our experiments is 4.7 GB/s.
GPFS allows all nodes to perform file metadata operations,
not relying on a centralized metadata server. Metadata are
managed at the node using the file or in the case of parallel
access to the file, at a dynamically selected node among the
ones using the file.

Jaguar. A Cray XT4/5 system located at the Oak Ridge
National Laboratory in the US [19]. The XT4 partition used
for our experiments has a total number of 7,832 quad-core
2.1 GHz AMD Opteron nodes. The total number of cores
is 31,328 and the aggregate system performance is approx-
imately 263 teraflops. Jaguar is attached to a Lustre file
system Version 1.6.5 with a scratch file-system capacity of
600 TB split into three file systems. The file server configu-
ration of the scratch file system partition used in this study
includes 72 object storage targets (OSTs) and 3 metadata
servers (MDSs) with dual-core 2.6 GHz AMD Opteron pro-
cessors, which are connected via Fibre-Channel. The over-
all file-system bandwidth is 40 GB/s. In contrast to GPFS,



Lustre uses dedicated metadata servers. Moreover, Lustre
allows the stripe factor (i.e., the number of OSTs a file is
distributed across) and the stripe depth (i.e, block size) to
be configured on a per-file or per-directory basis.

Note that the relatively expensive measurements presented
in this section were taken on the two systems under nor-
mal production conditions. Although the reported numbers
represent averages of typically three to five measurements to
compensate for natural run-to-run variations, we still expect
them to represent snapshots and general performance trends
rather than precisely reproducible numbers due to the enor-
mous variations common for I/O operations. However, we
believe that this is still sufficient to support our hypothesis.

4.1 Creating Multiple Files in Parallel
The following experiments compare the parallel creation of
large numbers of physical files in the same directory with
the creation of a SIONlib multifile consisting of a smaller
number of physical files. Whereas in the first case the time
between the first open and the last close is measured, creat-
ing a SIONlib multifile also involves several MPI collective
operations to broadcast the file-system block size, to gather
chuck sizes, and to scatter file offsets in addition to writing
the first metadata block (i.e., the header).

As shown by the graphs in Figure 3, the time needed to
create multiple physical task-local files in the same directory
in parallel increases with the number of tasks (i.e., files).
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Figure 3: Performance of creating new task-local
files in parallel in the same directory.

Although the way our library is implemented caused the
multifile creation time to grow with the number of tasks
as well, for the investigated configurations the time needed
to create a multifile was at least by an order of magnitude
below the corresponding time needed to create a separate
physical file per task.

Looking at the highest measured configuration on Jugene,
the parallel creation of 256 K files took approximately
33 min, which clearly demonstrates the scalability limits of
using multiple task-local files in parallel. In contrast, having
256 K tasks create a multifile (16 physical files) took only
8 s. On Jaguar, the time needed for the parallel creation
strongly depends on how many OSTs have been chosen to
stripe the files across. Since opening a file affects all of the
OSTs involved, the time increases with the number of OSTs.
Whereas creating 12 K files in parallel took only 4 s with the
default configuration of 4 OSTs, which does not seem criti-
cal at this scale, it took 5 min with 64 OSTs. We therefore
performed a comparison for the 64-OST case only, where
creating a multifile (32 physical files) on 12 K cores took
about 10 s. This constitutes a more than 30-fold improve-
ment. Unfortunately, time constraints did not allow us to
perform larger tests on this system.

4.2 Bandwidth
While our approach significantly reduces the file creation
overhead, as demonstrated in Section 4.1, it is also impor-
tant that SIONlib’s logical file mapping does not incur any
bandwidth penalty. If the available bandwidth cannot be
reasonably utilized, increasing tasks numbers and problem
sizes will be confronted by the problem of I/O consuming
growing fractions of the overall runtime. For this reason,
we compare the bandwidth achieved with SIONlib to the
maximum bandwidth available on the system and to the
bandwidth achieved when writing to or reading from physi-
cal task-local files. However, before drawing those compar-
isons, we examine the influence of the number of underlying
physical files and of the file-system block alignment on the
bandwidth achievable with SIONlib.

4.2.1 Multiple Physical Files
Since using a single underlying physical file to store the con-
tents of a SIONlib multifile may not offer the best band-
width utilization possible on a given system and systems
may also differ with respect to the optimal number of un-
derlying physical files, SIONlib was designed in such a way
that this number can be freely configured. Figures 4(a) and
4(b) show bandwidth measurements for different numbers of
files. Apparently, at least GPFS rewards the distribution of
the data across multiple physical files.

On Jugene, the measurements were taken on the full sys-
tem, increasing the number of physical files from 1 to 2048.
Since the bandwidth of the file system is limited to about
4.7 GB/s, a saturation of the performance gain could be
observed between 8 and 16 physical files. A potential rea-
sons for the lack of bandwidth if using less than 8 files may
be found in the way GPFS manages the metadata blocks
that contain information on the actual data blocks of a file.
Since only a single GPFS client is responsible for accessing
the metadata blocks of a given file, this client may turn into
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Figure 4: Bandwidth when using multiple underly-
ing physical files with SIONlib.

a bottleneck if the number of tasks writing to the file grows
very large.

To further investigate the relationship between bandwidth
and the number of underlying physical files, we exploited
the fact that on Jaguar striping parameters can be adjusted
and ran our test with two different sets of striping param-
eters. The first configuration is the default setting, which
stripes a file across 4 OSTs and uses a stripe depth of 1 MB.
The second one is better suited for parallel I/O to a single
file, striping a file across 72 OSTs with a stripe depth of
8 MB. Whereas the default setting shows a steady band-
width increase as the number of physical files is raised to
about 256 files, the optimized configuration delivered good
performance already for a single file and no significant ben-
efits were observed when using more than one file. In fact,
we noticed a slight bandwidth drop off when moving from
128 to 256 files.

Regardless of the number of files, using a higher number
of OSTs was always superior to the unoptimized configu-
ration. This suggests that on Jaguar, choosing the right
striping pattern is as important as choosing the number of
files. Nevertheless, using more than one physical file is nec-
essary if the size of a single file is limited. Typically, the
data sets written by large-scale parallel applications can be
in the range of multiple TB. For further measurements, we
decided to use at least 16 physical files on both systems.

4.2.2 Block Alignment
SIONlib aligns task-local chunks with file-system block
boundaries to avoid contention, which may occur if two
or more tasks simultaneously write to the same file-system
block because both chunks occupy a portion of it. To show
the benefit of the alignment, we ran two tests on Jugene,
writing and reading data to/from the GPFS file system,
which is configured with a block size of 2 MB. In the first in-
stance, we configured SIONlib with the correct block size so
that the data was perfectly aligned. In the second instance,
we configured SIONlib with a block size of 16 KB so that
chunks of different tasks would share the same file-system
block. Table 1 shows results with 32K tasks and 16 underly-
ing physical files on Jugene. The numbers clearly show that
contention diminishes the write bandwidth roughly by a fac-
tor two so that block alignment is strongly recommended on
Jugene. One reason for this considerable difference is that
the smallest granularity level at which files can be locked for
write access in GPFS is the file-system block. Assuming that
reading the files would use sharable locks, we have currently
no explanation for the improvement of the read bandwidth
though. In contrast, preliminary tests on Jaguar have not
yet confirmed a significant influence of block alignment on
the bandwidth.

#tasks data size blksize write read
32768 256 GB 2 MB 3650.2 MB/s 3544.5 MB/s
32768 256 GB 16 KB 1863.8 MB/s 2000.9 MB/s

→ 1.95x → 1.771x

Table 1: Bandwidth to a SIONlib multifile with 16
underlying physical files on Jugene with (top) and
without (bottom) block alignment.

4.2.3 Comparison to Physical Task-Local Files
Figure 5 compares the bandwidth of SIONlib using 32 un-
derlying physical files with the bandwidth of traditional par-
allel I/O to physical task-local files on a range of scales. On
Jugene, we conducted tests with SIONlib on up to 288 K
cores, while time limitations prevented us from conducting
tests without SIONlib on more than 128 K cores. On both
systems, SIONlib was configured to match the automatically
detected block size of 2 MB of the scratch file system and
the overall size of the SIONlib multifile was 2 TB. To avoid
cache effects, the process-to-data mapping was changed be-
tween writing and reading – similar to the approach applied
in IOR [9]. On Jaguar, we used 72 OSTs for SIONlib, as
this value was found to work efficiently during our measure-
ments presented in Section 4.2.1. In contrast, we used only 4
OSTs for traditional parallel task-local I/O since (i) accord-
ing to our experiences using a higher number reduces the
bandwidth presumably due to an excessive number of files
an OST must handle in parallel and (ii) a long file creation
time suggests to use a low number in this case anyway.

With and without SIONlib, the bandwidth was saturated
with 16 K or more tasks on Jugene. On Jaguar, write and
read bandwidth was always significantly better when using
SIONlib, but in neither of the two cases we were able to
reach the generous peak bandwidth of 40 GB/s.
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Figure 5: Bandwidth of SIONlib I/O with 32 under-
lying physical files in comparison to parallel I/O to
physical task-local files.

5. CASE STUDIES
To present evidence of SIONlib’s usefulness in practice, we
integrated SIONlib into two real-world applications. The
first one is the mesoscopic particle dynamics simulation
MP2C [24], the second one is the performance analysis tool
Scalasca [6, 21]. In both cases, we can report substantial
performance improvements.

5.1 MP2C
Mesoscale simulations of hydrodynamic media bridge the
gap between microscopic simulations on the atomistic level
and macroscopic simulations on the continuum level. To
study colloidal suspensions or semi-diluted polymer systems,
the Fortran code MP2C couples multiple-particle collision
dynamics, an established mesoscale simulation approach,
with molecular dynamics. The current version of MP2C is
based on MPI and uses a domain decomposition approach,
where geometrical domains of the same volume are dis-
tributed across the different processes.

Due to the extremely large numbers of particles involved,
the simulation of realistic system sizes on long time scales
requires an efficient implementation of the simulation code.
Although the basic algorithm used in MP2C was shown to
scale well, a limiting factor in production runs was met in
file I/O operations used to write checkpoint/restart and par-
ticle trajectory files. To avoid file handling issues that arise
from having a potentially large number of files from the very

beginning, the authors of the code had originally decided to
follow the single-file sequential approach explained in Sec-
tion 1, where one designated I/O task writes a single file on
behalf of all others. Experiencing all the scalability limita-
tions of this approach ranging from serialized I/O in com-
bination with alternating gather and write operations, the
problem size that could be used for MP2C on 1 K cores
of Jugene was effectively limited to roughly 10 M particles.
Since having each task write its restart data to a separate
physical file was no option due to the issues discussed ear-
lier, we found MP2C to be a suitable candidate for SIONlib.
After modifying approximately 50 lines of code, which in-
volved making each task write its restart data to its own
logical file instead of funneling it to the central writer task,
the application could run problem sizes of more than one
billion particles.

Figure 6(a) compares the times needed by MP2C to write
and read restart files on 1 K cores of Jugene with and with-
out using SIONlib, respectively. The measurements were
taken on a single rack in SMP mode. The 1000 task-local
files were mapped onto a single physical file. Since SIONlib
writes at least one file-system block per task to accommo-
date the 56 bytes per particle, the advantage of using our
approach materializes only for larger problem sizes, where
they are significant. For 33 M particles, the I/O performance
was improved by 1-2 orders of magnitude.
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Figure 6: Times needed by MP2C for writing and
reading restart files on 1 K cores of Jugene with and
without using SIONlib and on 16 K and 64 K cores
with SIONlib only.



Beyond performance improvements for 1 K cores, adopting
our library allowed MP2C to scale to much larger configura-
tions than before – both in terms of the number of particles
and the number of cores. Figure 6(b) shows the times needed
for restart file I/O on 16 K and 64 K cores, respectively. All
of the task-local files were mapped onto 16 physical files.
Note that the restart data written for 10 billion particles
consume 0.5 TB of disk space, explaining the still relatively
large amount of I/O time. Thanks to SIONlib, production
runs now simulate up to 0.5 billion particles.

5.2 Scalasca
Scalasca is an open-source toolset that can be used to an-
alyze the performance behavior of parallel applications and
to identify opportunities for optimization. It has been
specifically designed for use on large-scale systems includ-
ing IBM Blue Gene and Cray XT, but is also well-suited
for small- and medium-scale HPC platforms. As a dis-
tinctive feature, Scalasca provides the ability to identify
wait states in a program that occur, for example, as a re-
sult of unevenly distributed workloads, by searching event
traces for characteristic patterns. Especially when trying to
scale communication-intensive applications to large proces-
sor counts, such wait states can present severe challenges
to achieving good performance. The trace analysis is avail-
able for MPI applications and is currently being extended
towards support for the hybrid MPI/OpenMP programming
model. To perform a pattern search, each task first records
local events in a collection buffer and writes them to a
task-local file at measurement finalization according to the
multiple-file parallel method. Following the workflow de-
picted in Figure 7, the traces are then loaded postmortem
into the distributed memory of a parallel trace analyzer pro-
gram. Although the completion of trace analyses for ap-
plications running on up to 64 K cores has already been
demonstrated [6], the experiment activation (i.e., creating
the trace files and initializing the tracing library) was found
to be a notable bottleneck, as one would expect.

Instrumented
application

Local event
traces

Parallel
analysis Global

analysis result

Figure 7: Parallel trace analysis in Scalasca.

Table 2 shows measurement activation times on Jugene be-
fore and after the integration of SIONlib, which required
changing less than 50 lines of C code in the Scalasca trac-
ing module. The times were obtained from running the
fully instrumented MPI version of the ASC SMG2000 bench-
mark [1] on 64 K cores, using a 10x10x10 problem size per
process. This time, we specified 16 underlying physical files
to accommodate the aggregate trace size of 1105 GB. As can
be seen, the activation time was reduced by a factor of 9.8
to 28.1 s with the pure file creation consuming roughly 1 s.
The write bandwidth was even slightly improved.

To transparently retain the zlib [5] compression used by the
Scalasca tracing module during the write operation, a chunk
size equal to the amount of uncompressed data was chosen
so that only one block of chunks needed to be written. In
addition to the changes to Scalasca itself, reading the traces
into the trace analyzer, which makes parallel use of the se-

I/O type #tasks trace size activation write BW
Task-local 65536 1105 GB 253.5 s 3476 MB/s
SIONlib 65536 1105 GB 25.9 s 3589 MB/s

→ 9.8x

Table 2: Scalasca trace measurement activation time
without (top) and with (bottom) SIONlib for a 64 K
core run of SMG2000.

rial interface in the task-local view mode, required a minor
customization of the zlib read function to ensure that the
end of the local chunk was recognized. Moreover, to ensure
good write performance on Jugene, the zlib write function
had to be slightly adapted so that the incremental write
it performed once the compression buffer had been filled
observed the boundaries of GPFS file-system blocks. The
modifications of the zlib library did not affect more than 10
lines of code in total. In the medium term, we plan to sup-
port the analysis of hybrid codes via a separate multifile for
every OpenMP thread identifier, resulting in at most four
multifiles on Jugene with its four cores per node, working
around the currently still somewhat MPI-centric interface of
SIONlib.

6. CONCLUSION
This work addresses a common scalability problem of paral-
lel I/O to task-local files on peta-scale systems that is man-
ifested in (i) a prolonged file creation overhead and (ii) the
difficulty of managing excessive numbers of files. The I/O
library SIONlib described in this paper solves the two prob-
lems by transparently mapping a large number of logical
task-local files onto a very small number of physical files via
internal metadata handling. In this way, the time needed for
the parallel creation of tens of thousands of task-local files
can be reduced from several minutes to just a few seconds.
As we have demonstrated in two application scenarios, a
key advantage of SIONlib is that adapting an application
to use our library requires very little source-code changes.
In addition to its ease of use, the alignment of task-local
chunks with file system block boundaries makes sure that no
penalty has to be paid in terms of read or write bandwidth.
To allow a broad range of applications to take advantage of
SIONlib, a fully documented version has been made avail-
able to the community for download under an open-source
license at [23].

Our benchmark evaluation underlined our hypothesis of no
bandwidth penalty on both target architectures, even show-
ing some improvements on Jaguar. With respect to file cre-
ation time, SIONlib demonstrated clear advantages on Ju-
gene with up to 256 K tasks, while the small configurations
we tested on Jaguar (up to 12 K tasks) established substan-
tial improvements only for larger numbers of OSTs. Tests
on larger Jaguar partitions will be needed to further illumi-
nate this relationship. It is safe to say, however, that using
SIONlib usually increased and almost never reduced perfor-
mance. Most important, it always avoided the creation of
an excessive number of physical files and the management
problems that such excessive numbers may entail.

While not knowing the maximum amount of data read or
written in one piece only slightly reduces the convenience
of using our library, another limitation of our file layout is



that the maximum number of tasks must always be known
in advance, posing challenges for dynamic process manage-
ment. Moreover, the current interface has been primarily
designed for MPI applications, so that thread-local data in
hybrid codes have to be managed at the application level.
More systematic support for multithreaded applications is
therefore already on our road map. Furthermore, failures,
such as premature application termination or file quota vio-
lation, may cause the second metadata block to be lost. To
improve SIONlib’s robustness in such an event, we plan to
add small pieces of metadata to each chunk so that the full
metadata can be restored if needed. Finally, we are con-
templating the addition of transparent file compression to
SIONlib (e.g., via integrating zlib) to avoid customizations
such as the one described in the context of Scalasca.

Putting this work in a broader perspective, we hope that our
observations regarding the scalability of task-local file I/O
will raise the awareness for this problem in the wider HPC
community and that the general ideas developed in this pa-
per for its solution, which have been validated using SIONlib
as a reference implementation, will ultimately be adopted by
designers of standard file systems and I/O libraries.
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