
Automatic Trace-Based Performance Analysis of Metacomputing Applications

Daniel Becker1,2, Felix Wolf1,2, Wolfgang Frings1, Markus Geimer1,

Brian J.N. Wylie1, and Bernd Mohr1

1Forschungszentrum Jülich 2RWTH Aachen University
John von Neumann Institute for Computing (NIC) Department of Computer Science

52425 Jülich, Germany 52056 Aachen, Germany

{d.becker, f.wolf, w.frings, m.geimer, b.wylie, b.mohr}@fz-juelich.de

Abstract

The processing power and memory capacity of indepen-

dent and heterogeneous parallel machines can be combined

to form a single parallel system that is more powerful than

any of its constituents. However, achieving satisfactory

application performance on such a metacomputer is hard

because the high latency of inter-machine communication

as well as differences in hardware of constituent machines

may introduce various types of wait states. In our earlier

work, we have demonstrated that automatic pattern search

in event traces can identify the sources of wait states in par-

allel applications running on a single computer. In this

article, we describe how this approach can be extended

to metacomputing environments with special emphasis on

performance problems related to inter-machine communi-

cation. In addition, we demonstrate the benefits of our so-

lution using a real-world multi-physics application.

Keywords: performance tools, grid computing, meta-

computing, event tracing

1 Introduction

The solution of compute-intensive problems often re-

quires more processing power than is available on a sin-

gle parallel system, because the problem cannot be solved

within a reasonable time frame on a single machine or be-

cause the solution must be calculated under real-time con-

ditions (e.g. weather forecast). For this reason, the process-

ing power and memory capacity of multiple heterogeneous

parallel machines can be combined to form a more power-

ful metacomputer [14] that appears to its users as a single

1-4244-0910-1/07/$20.00 c©2007 IEEE.

transparent parallel machine. Apart from being a pure ag-

gregation of computational power, a metacomputer can also

provide a suitable platform for multi-physics simulations,

where the different submodels may be optimized for differ-

ent architectures.

Often, the metacomputer’s constituent systems, which

are called metahosts, are geographically dispersed and may

even belong to different organizations. In this sense, a meta-

computing environment can be regarded as a special type of

computational grid. Due to their distributed nature, the pre-

dominant programming model for metacomputers is mes-

sage passing, which may be combined with multithreading

used within the metahosts.

However, although applications can benefit from the in-

creased parallelism offered by a metacomputer, as sup-

ported by a recent study by Wong and Goscinski [19],

achieving satisfactory application performance is difficult.

Often, the network links connecting the different meta-

hosts exhibit high latency. In general, applications have to

deal with a hierarchy of varying latencies and bandwidths.

Moreover, the heterogeneity of metahost hardware includ-

ing the differences in internal networks complicate load

balancing. Finally, most applications are not designed to

distinguish between internal and external communication.

Given the fact that performance optimization for a single

machine is already a non-trivial task that requires substan-

tial tool support, we argue that this is even more important

for metacomputing environments.

In our earlier work [18], we have shown that automatic

analysis of event traces is an effective method for identi-

fying complex performance phenomena in parallel applica-

tions. Time-stamped events, such as entering a function or

sending a message, are recorded at runtime and searched

afterward (i.e., post mortem) for patterns of inefficient be-

havior. The detected pattern instances are classified by the

type of behavior and quantified by their significance for the

overall performance. In this article, we describe how this

approach can be extended to metacomputing environments

consisting of multiple independent parallel computers or

clusters. Our extension serves two goals:

• Allow metacomputing applications to take advantage

of automatic trace analysis in its present form.

• Formulate new patterns related to metacomputing-

specific performance problems, such as wait states dur-

ing inter-metahost communication.

The first goal requires solutions to the problems of estab-

lishing a global view of trace data in the absence of a global

file system and synchronizing time stamps across a hierar-

chy of network links with different latencies. Both goals

require a mechanism to identify the metahost a process is

running on.

The remainder of this article is organized as follows:

After reviewing the state-of-the-art in metacomputing and

discussing related work in Section 2, we introduce pattern

search in event traces as our performance-analysis method

of choice and explain the required infrastructure in Sec-

tion 3. The extensions applied to use this infrastructure in

a metacomputing environment are described in Section 4

along with new metacomputing-specific performance prob-

lems supported by this extension. In Section 5, we present

experimental results based on a real-world multi-physics

application in the metacomputing testbed used for our study.

Finally, we conclude the paper and outline future work in

Section 6.

2 Related Work

Metacomputing is an active area of research. Several

wide-area MPI libraries exist including MPICH-G2, PACX-

MPI, and MPICH/Madeleine that permit the execution of MPI

applications on a metacomputer. For our experiments, we

have chosen the MPI implementation MetaMPICH [3] de-

veloped at RWTH Aachen University, but it is worth noting

that our approach is independent of a particular MPI imple-

mentation. Before running metacomputing applications on

a computational grid, several computing resources includ-

ing the required network links need to be allocated. Bier-

baum et al. [2] describe a UNICORE-based infrastructure

supporting the co-allocation of the resources making up a

metacomputer, with special emphasis on the intricate task

of coordinating network allocation with application startup.

Gerndt et al. [9] review a number of grid-performance

monitoring and evaluation tools among which the follow-

ing are most relevant to our work: GRM/PROVE [13] are

trace-based application performance and monitoring tools

for message passing programs. GRM delivers trace data to

PROVE, which visualizes trace information on-line during

execution of the grid application. The tools target applica-

tions running on one grid resource, however, trace collec-

tion from several resources (e.g., metacomputing) is also

possible. Moreover, VAMPIR, a popular graphical trace

browser with a zoomable time-line display that allows the

fine-grained investigation of parallel performance behav-

ior, has been extended to support multi-site grid applica-

tions [5]. The extension includes a group concept allowing

the distinction between different metahosts during an anal-

ysis session. VAMPIR has also been successfully integrated

with the UNICORE grid middleware [10], allowing the user

to create a task with appropriate instrumentation and to re-

trieve the generated trace files for local visualization after

program termination. Another grid-enabled performance

monitoring and analysis system is SCALEA-G [16]. It pro-

vides an OGSA-based infrastructure for conducting on-line

monitoring and performance analysis. Both push and pull

models are supported. Source code and dynamic instrumen-

tation are exploited to perform profiling and tracing of grid

applications. Finally, Badia et al. [1] report how they have

used the prediction tool DIMEMAS to predict the perfor-

mance on a metacomputer based on execution traces from a

single machine in combination with measured network pa-

rameters that characterize the communication between dif-

ferent machines.

3 Automatic Trace Analysis

Event tracing is a powerful method for analyzing the

performance behavior of parallel applications. For exam-

ple, graphical trace browsers, such as VAMPIR [12] and

Paraver [11], allow the fine-grained investigation of paral-

lel performance behavior and provide statistical summaries.

However, in view of the large amounts of data generated on

contemporary parallel machines, the depth and coverage of

the visual analysis offered by a browser is limited as soon as

it targets more complex patterns not included in the statis-

tics generated by such tools.

Trace analysis. By contrast, the KOJAK toolset [18] auto-

matically searches global event traces of parallel programs

for patterns of inefficient behavior, classifies detected in-

stances by category, and quantifies the associated perfor-

mance penalty. This allows developers to study the perfor-

mance of their applications on a higher level of abstraction,

while requiring significantly less time and expertise than a

manual analysis. For a detailed description of the pattern

analysis including underlying abstraction mechanisms the

interested reader may refer to Wolf [17].

To perform the pattern search in a parallel way, KO-

JAK’s successor project SCALASCA exploits both dis-

tributed memory and parallel processing capabilities avail-

able on the metacomputer itself. Instead of sequentially an-

alyzing a single global trace file, SCALASCA analyzes sep-

arate local trace files in parallel by replaying the original

communication on the same hardware configuration and the

same number of CPUs as the one that has been used to exe-

cute the target application. That is we avoid merging local

trace files, and, thus, copying large amounts of trace data

across the network. A more detailed description of the par-

allel trace analysis, which was originally introduced to be

used on large-scale systems, such as IBM BlueGene/L, can

be found in [8].

Trace file organization. To simplify the management of

trace files (local and global ones) and analysis reports, all

files related to a single experiment are stored in the same

archive directory. Although this feature is not essential to

perform the intended analysis, compatibility with respect to

the development of utilities operating on experiment data

has motivated the decision to retain the archive directory in

the metacomputing-enabled version.

Event location. The location of an event is specified as a

tuple consisting of the following four elements: machine,

node, process, and thread. The machine represents a par-

allel computer or cluster, of which there is only one unless

the application runs in a metacomputing environment, as

described in the next section. A node is a substructure of a

machine and typically corresponds to an SMP node.

C
(t

)

t

Clock i

Clock j

dC

dtOffset
= drift

Figure 1. Clocks with both initial offset and

different constant drifts.

Synchronization of time stamps. Unfortunately, not all

parallel computers provide hardware clock synchronization

among different nodes. Instead, their node-local clocks

may vary in offset and drift (Figure 1). KOJAK as well

as SCALASCA address this problem with software synchro-

nization of time stamps [17] correct the precedence order

of distributed events, and, in particular, the causal order of

communication events that is known as the clock condition.

For this purpose, we perform offset measurements be-

tween one master node (without loss of generality the node

hosting the process with rank zero) and all the remaining

(slave) nodes. We assume that time stamps taken on the

same node are already synchronized. The measurements,

which are carried out according to the remote clock read-

ing technique [6], are taken at program start and repeated at

program end.

Under the assumption, that all clocks have a constant

drift and can be described in terms of a linear function,

based on an initial offset and a constant slope, it is possible

to perform a linear interpolation and calculate the master

time m as a function of the slave time s.

4 Trace Analysis on a Metacomputer

A metacomputer consists of several independent and po-

tentially heterogeneous parallel systems (metahosts), which

are connected by network links to a single unit. The meta-

hosts’ internal network is usually based on a fast intercon-

nect, such as SCI, Myrinet, Infiniband, or a proprietary net-

work. Metahosts belonging to the same organization are

typically connected via a local area network. Distant meta-

hosts, which often belong to different organizations, are

typically linked by a wide-area interconnection. Figure 2

shows the schematic view of a metacomputer including its

external and internal networks.

External network

Metahost C

Metahost A Metahost B

Node

CPU

Internal network Internal network

Internal network

Figure 2. Schematic view of a metacomputer

including its external and internal networks.

Our motivation to transfer the methodology described

in the previous section to metacomputing environments is

twofold: Our first goal was to allow metacomputing appli-

cations to take advantage of this performance analysis ap-

proach, which implies to simply make it work on a meta-

computer. Our second goal was to support the analysis of

metacomputing-specific performance problems. These two

goals lead to the following requirements:

• Facilitate automatic trace analysis in the absence of a

file system shared by all processes. The trace file of a

process can only be written to a file system the process

has access to. In a metacomputing environment, such

as the one used for our experiments, metahosts may be

owned by different organizations; therefore, the exis-

tence of a shared file system cannot be assumed. The

previous approach depends on a global file system be-

cause merging local trace files is performed inside the

same archive directory. Copying potentially large trace

files across the network is in principle possible, but

introduces undesired overhead especially if the appli-

cation was executed on a large number of processors.

Also, in the absence of a global file system, the afore-

mentioned archive directory would not be visible by

every process, which would result in erroneous behav-

ior.

• Adapt the mechanism for the synchronization of time

stamps such that it can cope with a hierarchy of laten-

cies found in metacomputer interconnects. The pre-

vious approach is inaccurate because of the network

links connecting different metahosts, whose latencies

may be an order of magnitude larger than those of the

internal networks. As a consequence, offset measure-

ments across these links are less accurate in absolute

terms than those across the internal networks, which

our measurements in Section 5 confirm. When pro-

cesses living on different nodes of the same metahost

measure their offset relative to a master process living

on another metahost, they might be well-synchronized

relative to the master because the accuracy of the off-

set is sufficient in relation to the message latency of the

external network. However, the offset relative to each

other, which is calculated by subtracting their offsets

relative to the master, might be inaccurate at an un-

acceptable scale when compared to the latency of the

internal network between them.

• Formulate patterns that refer to metacomputing-

specific performance problems, such as load balanc-

ing. This requires the ability to identify the metahost a

process is living on and to distinguish between differ-

ent metahosts during analysis. Later we will see that

this subrequirement is also a prerequisite for an im-

proved synchronization of time stamps.

The first two requirements address goal one, while the

third requirement addresses both goals one and two. In the

remainder of this section, we describe the pieces needed to

create a metacomputing-enabled trace-analysis infrastruc-

ture that satisfies the requirements listed above.

Metahost identification. The ability to identify the meta-

host a process is running on is required for both the

improved time synchronization and the formulation of

metacomputing-specific patterns. To correctly recognize

the metahost at runtime, the user has to set two environment

variables on each metahost that specify an unique numeric

identifier as well as a human-readable metahost name. The

numeric identifier is used during all internal operations of

trace generation and analysis, whereas the human-readable

name is used for the presentation of analysis results (see

Figure 6, tree in the right panel).

Hierarchical synchronization of time stamps. The pre-

vious synchronization of time stamps followed a centralized

approach that is based on the transitivity of offset relations.

All slave processes measure their offset relative to the mas-

ter and it is assumed that the offsets relative to each other

can be derived from their master offsets (Figure 3 (a)). The

error of the offset measurement between two processes at

a given moment (derived or measured) should be smaller

than the message latency between them to ensure the clock

condition. As explained above, this requirement may be vi-

olated if the offset between processes connected by a low-

latency link is derived from offsets between processes con-

nected by a high-latency link because it is assumed that the

error of offset measurements grows with the latency.

The previous offset measurement is flat in that all slaves

measure their offset by contacting the master directly with-

out taking the hierarchy of network latencies between them

into account. In contrast, our new scheme follows a hierar-

chical approach (Figure 3 (b)): Using the metahost identi-

fication mechanism, each metahost determines a local mas-

ter. After that, one metamaster is chosen among all local

masters. Now all local masters measure their offset rela-

tive to the metamaster. After this has been done, all slave

processes exchange ping-pongs with their local master to

determine the offset relative to the local master. In the case

that a metahost already provides a global clock, this sec-

ond step is omitted. Finally, the offset to the metamaster is

calculated by adding the two measured offset values. Since

all slaves within the same metahost now use the same inter-

metahost offset measurement, their relative offset remains

unaffected. An experimental validation of the new approach

is presented in Section 5.

Runtime archive management. In the previous single-

machine version, all local trace files are written to the same

archive directory, which therefore must be visible from all

processes. The archive directory is a container simplifying

the management of all files related to a single experiment.

Even if the advantage of a single archive cannot be trivially

retained in the absence of a shared file system, correct op-

eration requires that every process has access to an archive

directory to which the trace data can be written and where

they can be accessed later during the analysis.

...

Process

Process

...

...

...

Process

Process

...

...

Metahost 0 Metahost n-1

...

Process

Process

...

...

Metahost i

(a) Flat synchronization of time stamps with offset mea-

surements between all slave processes and the same

master process.

...

Process

Process

...

...

...

Process

Process

...

...

Metahost 0 Metahost n-1

...

Process

Process

...

...

Metahost i

(b) Hierarchical synchronization of time stamps with off-

set measurements between all local slave processes and

their local master.

Figure 3. Comparison of the previous flat

synchronization approach and the new hier-
archical synchronization.

To guarantee the existence of an archive directory

on each metahost, we apply the following hierarchical

scheme again utilizing the metahost identification mecha-

nism: First, rank zero attempts to create a single archive di-

rectory and broadcasts the outcome to all other processes

that only continue if the creation was successful. Then,

similar to the hierarchical synchronization, each metahost

appoints a local master process that checks whether it can

see the directory. If there is no directory because it resides

on a different file system, the local master creates another

one. Finally, all processes check whether they can see an

archive directory. The results are exchanged between all

processes using an all-reduce operation. If all processes can

see a directory, the measurement is resumed, otherwise the

application is aborted. This procedure offers a high degree

of scalability because it avoids a larger number of simulta-

neous attempts to create the same directory.

Parallel trace analysis. The major advantage of

SCALASCA’s parallel trace analysis in metacomputing

environments is that each analysis process needs only

access to the corresponding local trace file. Because of

our initial assumption that we use the same hardware

configuration for both the target application and the trace

analysis, each analysis process will automatically have

access to the trace data it needs. Note that the parallel

analysis exchanges trace data across the network, but that

the amount of data transferred per process is significantly

smaller than the entire trace file belonging to that process.

Metacomputing patterns. Our pattern analysis identifies

wait states that occur when processes reach synchroniza-

tion points at different moments. In MPI-1 applications,

such synchronization points can either have the form of

synchronous message exchanges between two processes in

point-to-point mode or of synchronous group communica-

tions in collective mode. A full description of the single-

machine patterns for MPI-1 has been given by Wolf and

Mohr [18].

When developing efficient MPI applications for meta-

computers, a major difficulty arises from load balancing.

As illustrated in Figure 2, the metahosts making up a meta-

computer may differ in the number of nodes, in the number

of CPUs per node, in the type of CPU and operating sys-

tem, and in the characteristics of their internal networks. In

addition, the external network connecting them may suffer

from high latency and, if it is not a dedicated network link,

from interference with unrelated traffic. Since load imbal-

ance often manifests itself as processes arriving untimely at

synchronization points, the general concept behind our pat-

tern analysis is well suited to guide application developers

in recognizing problems of this kind.

To distinguish pattern instances that result from pro-

cesses on different metahosts waiting for each other, we

have created special “grid” versions of most of the already

existing patterns. In the case of point-to-point communi-

cation, the analysis recognizes whether sender and receiver

reside on different metahosts. In the case of collective com-

munication, the entire communicator is searched for pro-

cesses differing in their machine (i.e., metahost) location

component. Below, we discuss two representative exam-

ples, the Late Sender and the Wait at N × N pattern.

A point-to-point message can only be received after it

has been sent. Late Sender (Figure 4 (a)) refers to the sit-

uation, in which a process is waiting in a blocking receive

operation (e.g, MPI Recv() or MPI Wait()) that is posted

earlier than the corresponding send operation.

A related phenomenon can be observed during cer-

tain types of collective communication. Collective op-

erations that send data from n processes to n processes

(e.g., MPI Allreduce()) exhibit an inherent synchroniza-

Send

 time

lo
ca

tio
n

Receive
(mi,nj,pk)

(m i-1,nj-1,pk-1)

waiting

(a) Late Sender pattern.

Collective

 time

lo

ca
tio

n

Collective
(mi ,nj,pk)

(mi ,nj+1,pk+1)

Collective

(m i-1,n j-1,pk-1)
waiting

waiting

(b) Wait at N times N pattern.

Figure 4. Exemplary point-to-point and col-

lective metacomputing patterns.

tion among all participants, that is, no process can finish the

operation until the last process has started it. Wait at N×N

(Figure 4 (b)) covers the time spent in n-to-n operations un-

til all processes have reached it. Waiting at an MPI barrier

can be considered a variant of this pattern and is called Wait

at Barrier.

The grid versions of these patterns (Grid Late Sender and

Grid Wait at N × N) simply check whether communication

across different metahosts has taken place. Our graphical

browser organizes the grid patterns in a hierarchy, which al-

lows a convenient in-depth study of the performance behav-

ior at varying levels of granularity. The hierarchy mirrors

the hierarchy used for the non-grid versions of our patterns.

In the following section, we show that these patterns can in-

deed provide valuable information on the performance be-

havior of metacomputing applications.

5 Experimental Results

In this section, we present experimental results that prove

the feasibility of our approach and demonstrate the addi-

tional value created for the performance analysis of meta-

computing applications. We start with a description of

the metacomputing testbed used for our experiments, fol-

lowed by an experimental validation of the hierarchical

time-stamp synchronization scheme. Finally, we discuss

metacomputing-specific performance problems of a real-

world multi-physics application that have been identified

using our tool set.

The VIOLA metacomputer. VIOLA [4] is a project

funded by the German Ministry for Education and Re-

search, which provides a testbed for advanced optical net-

work technology. A major focus is the enhancement and

test of new advanced grid applications. The network topol-

ogy of the testbed section used in our study is illustrated in

Figure 5.

FH-BRS

FZJ

CAESAR

10
 G

b
ps

1
0

 G
b
p

s

10 Gbps

Cray XD 1

PC-ClusterPC-Cluster

Figure 5. Network topology of the VIOLA
testbed section used for our experiments.

The section comprises three sites, the Center of

Advanced European Studies and Research (CAESAR),

FH Bonn-Rhein-Sieg Stankt Augustin (FH-BRS), and

Forschungszentrum Jülich (FZJ), which are connected via

high-speed optical links offering a bandwidth of 10 Gbps

between each pair of sites. The three sites lie between 20

and 100 km apart. The metacomputer used for our purposes

includes three metahosts, one at each site:

• A PC Linux cluster with 32 2-way Intel Xeon SMP

nodes at 2.6 GHz with a Gigabit Ethernet interconnect

located at CAESAR.

• A PC Linux cluster with 6 4-way AMD Opteron SMP

nodes at 2 GHz with a usock over Myrinet interconnect

located at FH-BRS.

• A Cray XD1 Linux cluster with 60 2-way AMD

Opteron SMP nodes at 2.2 GHz with a usock over Rap-

idArray interconnect located at FZJ.

The three metahosts provide a separate Gigabit Eth-

ernet network interface adapter for each node so that a

direct connection to the external network can be estab-

lished from each process. MetaMPICH, the MPICH-based

MPI-implementation chosen for this testbed, supports this

direct external connection through its multi-device archi-

tecture [3] that allows communication between processes

across the external network without the involvement of ded-

icated router processes that would be needed otherwise.

Table 1. Latencies of the internal and external
networks in VIOLA.

mean [µs] std. deviation [µs]

FZJ - FH-BRS
9.88E+02 3.86E+00

(external network)

FZJ
2.15E+01 8.14E-01

(internal network)

FH-BRS
4.44E+01 3.60E-01

(internal network)

Synchronization of time stamps. In our configuration,

the latency of the external network exceeds the latency of

the internal network by two orders of magnitude. Also, the

latencies of the internal networks differ significantly. Ta-

ble 1 shows the latencies measured using MetaMPICH. The

standard deviation is an indicator for the precision of offset

measurements across these links, which confirms our as-

sumption that offset measurements across the external net-

work are much less accurate than those across the internal

networks.

The accuracy of the hierarchical synchronization scheme

was verified using a benchmark that has been specifically

designed to exchange a large number of short messages be-

tween varying pairs of processes. This way, the benchmark

produces pairs of send and receive events that are chrono-

logically close to each other. Also, the parallel analyzer has

been extended to report violations of the clock condition.

Table 2 shows the number of violations found in traces from

this benchmark for synchronization based on (i) a single flat

offset measurement without compensation for drift, (ii) two

flat offset measurements and subsequent linear interpolation

(our previous method), and (iii) two hierarchical offset mea-

surements and subsequent linear interpolation. As one can

see in this experiment, the hierarchical scheme was able to

significantly reduce the number of clock condition viola-

tions.

Table 2. Number of clock condition violations

recognized by the parallel analyzer.

Measurement clock condition violations

single flat offset 7560

two flat offsets 2179

two hierarchical offsets 0

Analysis of a metacomputing application. To demon-

strate that automatic trace analysis can help identify typical

performance problems related to metacomputing, we ana-

lyzed the performance of a multi-physics application called

MetaTrace [7], which simulates solute transport in hetero-

geneous soil-aquifer systems to study the spread of ground-

water pollutants. MetaTrace consists of two submodels:

Trace calculates the velocity field of water flow in vari-

ably saturated media, whereas Partrace calculates the solute

transport in a given velocity field (i.e., the one provided by

Trace). Trace applies a three-dimensional domain decom-

position with nearest-neighbor communication. The algo-

rithm is based on a parallel version of the conjugate gra-

dient (CG) method. In contrast, Partrace tracks individual

particles. Every 10-15 seconds, Trace sends the velocity

field in a chunk of 200 MB in parallel to Partrace for further

processing. In addition, Partrace sends steering informa-

tion to Trace. The entire simulation is provided as a sin-

gle executable that integrates the two submodels written in

FORTRAN and C++ using a wrapper written in C. It is worth

noting that our toolset can, in principle, also handle separate

executables. The application was instrumented by inserting

directives which were automatically translated into tracing

API calls by a preprocessor.

Table 3. Detailed configurations of the three-

metahost and one-metahost experiments.

Experiment 1 Experiment 2

Partrace

XD1: IBM AIX POWER:

8 nodes 1 node

2 processes/node 16 processes/node

Trace

FH-BRS: IBM AIX POWER:

2 nodes 1 node

4 processes/node 16 processes/node

CAESAR:

4 nodes

2 processes/node

To facilitate a comparison between a heterogeneous and

a homogeneous cluster, we performed two experiments, one

using three metahosts and one using a single metahost. The

total number of processes was 32 in both cases. The detailed

configurations of these experiments are listed in Table 3.

Note that we assigned the same number of processors to

Trace and Partrace.

Parallel trace analysis. Figure 6 shows screen shots of

trace analysis results for the three-metahost case. In each

subfigure, the tree in the left panel displays the grid-specific

patterns discussed earlier, which are arranged in a special-

ization hierarchy. The numbers left of the pattern names

indicate the total execution time penalty in percent. In ad-

dition, the color of the little square provides a visual clue of

the percentage to quickly guide the user to the most severe

performance problems. The middle tree shows the distri-

bution of the selected pattern across the call tree. Finally,

the right tree shows the distribution of the selected pattern

at the selected call path across the hierarchy of metahosts,

nodes, and processes.

Apparently, the application suffers from both Late

Sender and Wait at Barrier, when communicating or syn-

chronizing across metahost boundaries. As the displays in-

dicate, the grid-specific Late Sender version (Figure 6 (a))

and the grid-specific Wait at Barrier version (Figure 6 (b))

consume 9.3 % and 23.1 % of the overall execution time,

respectively.

In the three-metahost case, Partrace ran on the XD1,

while Trace was distributed across the FH-BRS cluster and

the CAESAR cluster. Functions in Trace that did not call

any MPI routines (e.g. finelassdt()) were executed

about two times faster on the FH-BRS cluster than they

were on the CAESAR cluster, although the algorithm as-

signs the same portion of work to every process in Trace.

A major fraction of the Late Sender pattern is concentrated

in cgiteration(), a function communicating only inside

Trace according to a nearest neighbor scheme with most

of the waiting time occurring on the faster FH-BRS cluster.

Given that both FH-BRS and CAESAR supply the same num-

ber of CPUs to process the same amount of work, the result

suggests that the speed differences mentioned above can be

held responsible.

Moreover, most of the Wait at Barrier problem occurs

inside the Partrace function ReadVelFieldFromTrace(),

a function that only does synchronous communication

with Trace. More precisely, Trace waits at the bar-

rier in function printtolink() until all processes in

Partrace reach the corresponding barrier in function

ReadVelFieldFromTrace(), before Trace unidirectionally

sends the velocity field to Partrace for further processing.

The bigger share of the barrier waiting time in this ex-

periment could be attributed to Partrace, which indicates

another imbalance, this time between the two component

models. However, only based on this analysis result it is dif-

ficult to judge whether the imbalance is caused by the het-

erogeneity of the cluster (including varying network charac-

teristics) or by the application itself (e.g., algorithm or input

data).

It can be observed that running the application on the

homogeneous cluster IBM AIX POWER (Figure 7) leads

to a significant decrease of the barrier waiting time in-

side the Partrace function ReadVelFieldFromTrace() and

also of the waiting time in the receive operation inside

cgiteration() mentioned above. In spite of an overall

performance improvement, a Late Sender problem occur-

ring inside another function that involves communication

of currently unused steering information from Partrace back

to Trace experienced a significant increase, indicating that

now Trace mostly waits for Partrace. This large impact

of the heterogeneous hardware configuration on the perfor-

mance behavior is typical for metacomputing applications.

In the case of MetaTrace, a dynamic load balancing scheme

might be advisable.

6 Conclusion

The contribution of this work is twofold. First, we have

made the performance analysis technique of automatic pat-

tern search in event traces available to metacomputing en-

vironments. For this purpose, we have developed an exten-

sion to the SCALASCA toolkit consisting of the following

components:

1. Extended runtime configuration management capable

of identifying the metahost an application process is

running on, a prerequisite needed for the remaining

items.

2. A hierarchical mechanism for synchronizing event

timings that is able to deal with substantially different

latencies in external and internal networks.

3. Extended trace archive management permitting the

creation of multiple partial trace archives, which is re-

quired in the absence of a shared file system between

metahosts.

In addition, we have shown that the parallel trace algo-

rithm used in SCALASCA is not only more scalable, but also

avoids costly copying of trace data between metahosts in

the absence of a shared file system.

Second, we have defined metacomputing-specific pat-

terns that target wait states occurring during communica-

tion between different metahosts. As our experiments have

shown, these wait states provide useful hints pointing the

application developer to potential sources of load imbal-

ance. However, from a single experiment it is difficult to

judge whether the load imbalance is caused by the hetero-

geneity of the cluster (including varying network character-

istics) or by the application itself (e.g., algorithm or input

data). The value of our trace analysis is increased by the

comparison with measurements on a homogeneous cluster.

This type of comparative analysis could be effectively

supported by the algebra utilities developed by Song et

al. [15], which we plan to make available in a version com-

patible to the parallel analyzer. Also, it is worth mentioning

that our analysis does not yet use all the information avail-

able in our trace data. For example, the current grid patterns

only distinguish between internal and external communi-

cation without differentiating between different combina-

tions of metahosts. Here, a more fine-grained classification

would be desirable.

(a) Analysis results for the three-metahost case: Grid Late Sender problem inside the Trace function cgiteration() distributed across the

FH-BRS and the CAESAR clusters.

(b) Analysis results for the three-metahost case: Grid Wait at Barrier problem inside the Partrace function ReadVelFieldFromTrace() on the

Cray XD1 at FZJ.

Figure 6. Analysis results of the multi-physics application MetaTrace showing the metric hierarchy,
the call tree, and the hierarchy of system resources.

Figure 7. Analysis results for the one-metahost case: Wait at Barrier problem inside the Partrace

function ReadVelFieldFromTrace() on the IBM AIX Power cluster at FZJ.

References

[1] R. M. Badia, F. Escale, E. Gabriel, J. Gimenez, R. Keller,

J. Labarta, and M. Müller. Performance prediction in a grid

environment. In Proc. of the 1st European Across Grid Con-

ference, Santiago de Compostella, Spain, February 2003.
[2] B. Bierbaum, C. Clauss, T. Eickermann, L. Kirtchakova,

A. Krechel, S. Springstubbe, O. Wäldrich, and W. Ziegler.

Orchestration of distributed MPI-applications in a

UNICORE-based grid with metampich and metaschedul-

ing. In Proc. 13th European PVM/MPI Conference, Bonn,

Germany, September 2006. Springer.
[3] B. Bierbaum, C. Clauss, M. Pöppe, S. Lankes, and T. Be-

mmerl. The new multidevice architecture of MetaMPICH

in the context of other approaches to grid-enabled MPI.

In Proc. 13th European PVM/MPI Conference, Bonn, Ger-

many, September 2006. Springer.
[4] BMBF (Ministry for Education and Research). Vertically

Integrated Optical Testbed for Large Applications in DFN

(VIOLA). http://www.viola-testbed.de/.
[5] H. Brunst, E. Gabriel, M. Lange, M. S. Müller, W. E. Nagel,

and M. M. Resch. Performance analysis of a parallel appli-

cation in the grid. In Proc. of the International Conference

on Computational Science (ICCS). Springer, 2003.
[6] F. Cristian. Probabilistic clock synchronization. Distributed

Computing, 3:146–158, 1998. Springer Verlag.
[7] Forschungszentrum Jülich. Solute Transport in Heteroge-

neous Soil-Aquifer Systems. http://www.fz-juelich.

de/icg/icg-iv/modeling.
[8] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr. Scalable

parallel trace-based performance analysis. In Proc. 13th Eu-

ropean PVM/MPI Conference, Bonn, Germany, September

2006. Springer.
[9] M. Gerndt, R. Wismüller, Z. Balaton, G. Gombas, P. Kac-

suk, Z. Nemeth, N. Podhorszki, H.-L. Truong, T. Fahringer,

M. Bubak, E. Laure, and T. Margalef. Performance tools

for the grid: State of the art and future. Technical report,

APART White Paper, 2004. http://www.lpds.sztaki.

hu/˜zsnemeth/apart/repository/gridtools.pdf.
[10] S. Haubold, H. Mix, W. E. Nagel, and M. Romberg. The

UNICORE grid and its options for performance analysis.

pages 275–288, 2004.
[11] J. Labarta, S. Girona, V. .Pillet, T. Cortes, and L. Gregoris.

DiP : A parallel program development environment. In Proc.

of the 2th International Euro-Par Conference, Lyon, France,

August 1996. Springer.
[12] W. Nagel, M. Weber, H.-C. Hoppe, and K. Solchenbach.

VAMPIR: Visualization and analysis of MPI resources. Su-

percomputer, 12(1):69–80, 1996.
[13] N. Podhorszki and P. Kacsuk. Presentation and analysis of

grid performance data. In Proc. of the 9th International

Euro-Par Conference, Klagenfurt, Austria, 2003. Springer.
[14] L. Smarr and C. E. Catlett. Metacomputing. Communica-

tions of the ACM, 35(6), June 1992.
[15] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore.

An algebra for cross-experiment performance analysis. In

Proc. of the International Conference on Parallel Process-

ing (ICPP), Montreal, Canada, August 2004. IEEE Com-

puter Society.
[16] H.-L. Truong and T. Fahringer. SCALEA-G: A unified mon-

itoring and performance analysis system for the grid. Scien-

tific Programming, 12(4):225–237, 2004. IOS Press.
[17] F. Wolf. Automatic Performance Analysis on Parallel Com-

puters with SMP Nodes. PhD thesis, RWTH Aachen,

Forschungszentrum Jülich, February 2003. ISBN 3-00-

010003-2.
[18] F. Wolf and B. Mohr. Automatic performance analysis of

hybrid MPI/OpenMP applications. Journal of Systems Ar-

chitecture, 49(10-11):421–439, Nov. 2003.
[19] A. Wong and A. Goscinski. Using an enterprise grid for

execution of MPI parallel applications - a case study. In

Proc. 13th European PVM/MPI Conference, Bonn, Ger-

many, September 2006. Springer.

