A Parallel Trace-Data Interface for Scalable
Performance Analysis

Markus Geimet, Felix Wolf-?, Andreas Knupfet,
Bernd Moht, and Brian J. N. Wylié

1 John von Neumann Institute for Computing (NIC)
Forschungszentrum Jillich, 52425 Julich, Germany
{mgeiner, f.wolf, b.mohr, b.wlie}@z-juelich.de

2 Department of Computer Science
RWTH Aachen University, 52056 Aachen, Germany

3 Center for Information Services and High Performance CdingyZIH)
Dresden University of Technology, 01062 Dresden, Germany
andr eas. knuepf er @ u- dr esden. de

Abstract Automatic trace analysis is an effective method of idemtiiycomplex
performance phenomena in parallel applications. To siinfiie development of
complex trace-analysis algorithms, tB@RL library interface offers high-level
access to individual events contained in a global traceHitavever, as the size
of parallel systems grows further and the number of proecessed by individual
applications is continuously raised, the traditional aagh of analyzing a single
global trace file becomes increasingly constrained by tlieelaumber of events.
To enable scalable trace analysis, we present a new desilga aforementioned
EARL interface that accesses multiple local trace files in palralhile offering
means to conveniently exchange events between processgsiriicle describes
the modified view of the trace data as well as related progragibstractions
provided by the newEeARL library interface and discusses its application in per-
formance analysis.

1 Introduction

Event tracing is a well-accepted technique for post-monpemiormance analysis of
parallel applications. Time-stamped events, such asiagterfunction or sending a
message, are recorded at runtime and analyzed afterwatlighei help of software
tools. For example, graphical trace browsers, suckAasPIR [1] or PARAVER [2],
provide a zoomable time-line display, allowing a manuakfgrained investigation of
parallel performance behavior.

However, regarding the large amounts of data usually gésgerautomatic off-line
trace analyzers, such &XPERT from the KOJAK toolset [3,4], can provide the user
with relevant information more quickly by automaticallyasehing traces for complex
patterns of inefficient behavior and quantifying their giigance. In addition to usually
being faster than a manual analysis performed using themmfemtioned trace browsers,



this approach is also guaranteed to cover the entire evace sind not to miss any
pattern instances.

To simplify the analysis logic incorporated @XPERT, it has been designed on top
of EARL [5], a high-level interface to access individual eventsifiasingle global trace
file. As opposed to a low-level interface that allows readimgjvidual event records
only in a sequential mannezARL offers random access to individual events. Not to
restrict trace-file sizegARL assumes access locality allowing it to buffer the context
of recent accesses in main memory while reading eventsdevitisis context from file.
In addition, to support the identification of pattern consts,EARL provides a set
of abstractions representing execution state informattahe time of a given event as
well as links between related events, such as corresporditey and exit events for
function instances.

Unfortunately, sequentially analyzing a single and paadigtlarge global trace file
does not scale well to applications running on thousandsarfgssors. Even if access
locality is exploited as described above, the amount of nmaémory might not be
sufficient to store the current working set of events. In tiddj the preceeding step of
merging local event trace data generated by individualgsses into a global trace file
is very time-consuming. Moreover, the amount of trace datghtmot even fit into a
single file, which already suggests to perform the analysismore distributed fashion.

To enable scalable trace analysis for modern large-scatersg and applications
running on them, we have designed a parallel trace-datdanePEARL as a building
block for parallel trace analysis algorithms and tools.His farticle, we describe the
modified view of the trace data in combination with programgnabstractions repre-
senting this view. We start our discussion with a review d¢ditedd work in Section 2,
followed by a description of the serial interface in Sect®rin Section 4, we detail
the programming abstractions offered by the new paralteltiace, before presenting
the intended usage as a framework for implementing autematiallel trace analysis
in Section 5. Finally, we conclude the paper and outline shurtber improvements in
Section 6.

2 Related Work

In [6], WoIf et al. review a number of approaches addresstglable trace analysis.
The frame-basedLoOG trace-data format [7] supports scalable visualizationenghs
dynamic periodicity detection in Op&® applications [8] prevents redundant perfor-
mance behavior from being recorded in the first place. Ingoditio our approach has
been the distributed trace analysis and visualization WePIR Server [9], which
already provides parallel trace access mechanisms, advgdting a “serial” human
client in front of a graphical trace browser as opposed tly falitomatic and parallel
trace analysis. Miller et al. have used a distributed atgorion multiple local trace data
sets [10] to calculate the critical path, which identifiestpaf the program responsible
for its length of execution.

Unlike common linear storage schemes for event trace datatrée-based main
memory data structure calledcc [11] allows potentially lossy compression of trace
data while observing previously specified deviation boutsilsce we are considering



to use €CGs as an alternate base data structure for our trace-dattaggethe parallel
programming abstractions described in this paper are dedign such a way that the
underlying data structure can be easily changed when thayilis compiled.

3 Serial Programming Interface: EARL

EARL (Event Analysis and Recognition Library) is a C++ classdifyrthat offers a
high-level interface to access event tracesBf, OpemmP, or SHMEM applications. In
the context ofEARL, an event trace is stored in a single global trace file thdtides
events from all processes or threads in chronological ofider user is given random
access to individual events allowing the retrieval of distievents by their index within
the chronologically sorted sequence. Loops iterating theentire trace can be easily
implemented by querying the total number of events befardha

In addition,EARL provides execution state information at the time of a givesné
in the form of event sets describing a particular aspect isfdtate. The state being
calculated is either local or global. Local state alway®mefto a single process or
thread, whereas global state may encompass multiple meses threads. Local state
information provided byeARL includes the call stack in form of the enter events of
currently active region instances; global state infororatncludes the set of messages
currently in transit represented by their respective semehts, completed collective
operations represented by their respective exit eventsttenglobal call tree derived
from the different call stacks, as it evolves over time. Bbse this state information,
EARL also provides links between related events, which ared@ienter attributes.
Pointer attributes can also be divided into local and glakiabutes. There is one local
attribute pointing to the enter event of the currently actiggion instance and allowing
traversal of the call stack. Several global attributes suffpinctions, such as locating
the send event corresponding to a given receive event, elyigilentifying call paths,
traversing the global call tree, or following the ownershiptory of Opemp locks
between threads.

The intended trace analysis process supportegari is a sequential traversal of
the event trace from beginning to end. As the analysis pesgieEARL updates the
execution-state information and calculates pointerlattas for the most recent event
being read, which always point backwards to avoid a costhkdahead. To make the
trace analysis process more efficieeARL buffers the context of the current event so
that events within this context can be directly accessead frmin memory. This context
includes the lash events (i.e., the history), including the entire relatedation-state
information.

To avoid re-reading the trace file from the very beginningases where an event
outside the context is requestethrRL additionally stores the complete execution state
information at regular intervals in so-called bookmarkise history size as well as the
bookmark distance can be flexibly configured, however, sihese parameters have a
significant performance impact with respect to memory consion and the number
of required file accesses and, in addition, these effectsighty application dependent,
finding an optimal set of parameters is a non-trivial task.rRore details abolWARL,
the interested reader may refer to the user manual [12].



4 Parallel Access to Trace DataPEARL

In this section, our new parallel programming interfacedocessing event trace data
is presented. Before going into the details of the programyrabstractions provided,
we start with an outline of the overall design and show hovwifieds from the previous
approach described above.

4.1 Design Overview

Similar toEARL, our new parallel trace data access interface, which werealRL, is
also implemented as a C++ class library. However, we no loaggime a single global
trace file, as was the case for the serial interface. InsteagRL operates on multiple
process-local trace files.

For simplicity, our initial implementation of theeARL library focuses only on
single-threadediPi-1 applications. However, during the entire design it w&ermanto
account that we plan to extend this approach to alternatdleprogramming models,
such as Opeawp or MPI-2. Therefore, the@eARL library interface is subdivided into a
generic part, which is independent of the programming mosedl, and ampi-specific
part, implemented by deriving specialized subclasses flamgeneric interface. Once
support for multi-threaded applications has been addedRrL will access one local
trace file per thread.

The benefit behind the approach of using multiple local tfdeginstead of a single
global file is twofold. First, it avoids the time-consumirtgs of merging the process-
local trace files generated by the measurement system intogke global file. And
second, it allows us to effectively exploit the distributeémory and parallel process-
ing capabilities available on modern supercomputer systéxa a consequence, the
analysis algorithms and tools basedrmaRL will usually be parallel applications in
their own right with expected scalability improvements qgared to serial versions.

The originally envisaged usage model REARL assumes a one-to-one mapping
between analysis and target-application processes. 3Hat ievery process of the tar-
get application, one analysis process responsible forr#toe tdata of this application
process is created. However, theARL library itself imposes no restrictions on how
many traces can be handled by a single analysis processy@gadosufficient system
resources (especially memory) are available. It is eveniplesto implement sequential
tools based oREARL, processing the local traces one after another.

The trace data is exposed to the user through two fundamelatsdes, namely
A obal Def s andLocal Trace. Before describing both classes in more detail, the re-
quired organization of trace files and how it is establishedeaplained.

4.2 Trace File Organization

To generate trace data suitable f@mARL, we have modified the origin&oJAk mea-
surement system. An essential change has been omitting ehgenstep and storing
event data and the definitions of entities referenced byteverseparate types of files,
which correspond to the class@sbal Def s andLocal Tr ace mentioned above.



Event data stored in trace files refer to static programiestisuch as the code
regions entered or left. However, to avoid redundancy and storage space, event
records contain only identifiers referencing these estaied the identifiers are defined
separately. During measurement each process assignsdentifiers to these entities,
and subsequently uses these local identifiers in eventdsedrenever the correspond-
ing entities are referenced.

Immediately after program execution, the measuremergyahifies the local def-
initions and generates a single global definitions file, wheaich entity is assigned a
global identifier. In addition, to allow the conversion ot into global identifiers,
the measurement system creates one mapping table perqrbctss way, the actual
event files, which still contain local identifiers, need netrbwritten and costly/o can
be avoided. This unification step was previously perfornmsdgia separate executable,
but has recently been fully integrated it into the measurgrsgstem itself. A more
comprehensive description of these mechanisms can be fo(ihd].

4.3 Accessing Global Definitions

In the context of theEARL library interface, information about static program easit
that can be shared between all processes or threads of &eptaeale analysis tool is
represented by the claSsobal Def s. That is, every process has to create a single in-
stance of this class for each experiment it analyzes, whichmstantiation reads the
corresponding global definitions file generated by the nressent system. All pro-
cesses read the same file, because they share the same sbtbtigfinitions.

Thed obal Def s instance provides the user with details regarding the tdbreal
structure of the computer system used during trace file géioar consisting of ma-
chine, node, process, and thread descriptions as well msdlaionships, such as the
topological distribution (either from a logical point ofewir or with respect to the hard-
ware). In addition, it offers ways to query information orogps of locations in the
system hierarchy (i.e., threads or processes), which arénstance, used to specify
MPI communicators.

Moreover, thed obal Def s object stores the details of instrumented code regions
and call sites, as well as the global call tree of the appticahat is currently analyzed.
This global call tree will be generated by the measuremestesy at the end of exe-
cution of the target application and stored in the globalniédins file. Alternatively,
the PEARL library provides functionality to reconstruct the globalldree during the
trace analysis as an optional preprocessing step. Howtigreconstruction can not
be performed before the entire event-trace data has begaddato memory. Note that
different fromeARL, the call tree is no longer defined in terms of links betweeli+in
vidual events (i.e., pointer attributes), but in a sepadate structure which simplifies
the handling of call-path information.

4.4 Accessing Event Data

In addition to thed obal Def s object, each analysis process (or thread in case of multi-
threaded applications) has access to one local event tepcesented by an instance
of the clasd.ocal Trace. Since we assume that the internal in-memory representatio



of a local trace is smaller than the memory available to alsipgocess on a parallel
machine, the entire local trace can be keptin main memdaxirey the aforementioned
limitations resulting from strict forward analysis. In ethwords, theeEARL library can
provide performance-transparent access to individualteyalus local execution state
information.

To make sure that our assumption of being able to keep theé¢race data in mem-
ory is not too restrictive for the future, thecal Tr ace interface provided bpEARL is
designed in such a way that it allows to select between diffeunderlying trace data
structures, which can be chosen when the library is compiledresentpeARL offers
(i) a linear list with full functionality and (ii) rudimentaupport for €cG graphs. The
latter option will be extended and further investigated stipport very long traces, it
would even be possible to add BaRL-like backend using a sliding-window approach
and sophisticated buffering mechanisms.

While reading the event trace into memory, tteeal Trace object automatically
performs two important operations: First, it corrects tineestamps of the individual
events using linear interpolation to — at least partiallpmpensate for unsynchronized
clocks. And second, it “globalizes” all identifiers usedhie trace file by creating refer-
ences to the corresponding static program entities prdvigethe singled obal Def s
instance, using the per-process mapping tables mention8ddtion 4.2. That is, the
event objects created from the event records provide psiitieo the same set of ob-
jects. After these on-the-fly transformations, which areptetely transparent to the
user, the instances of claksscal Trace provide a unified view of the event data with
respect to timestamps and references to global definitigattsh This is especially use-
ful when exchanging event data between processes, aslosariSection 4.5.

Individual events of local traces can be accessed througlEvitnt class which
provides access to all possible event attributes, follgwie Composite design pattern
[14]. For navigating through the local trace, this clas® @sposedterator semantics
available via simpleper at or - - () andoper at or ++() methods. With respect to the it-
erator functionality, the two classéscal Tr ace andEvent provide an interface that is
very similar to that of the C++ Standard Template Libragyl() container classes and
their corresponding iterators. For example, theal Trace class providedegi n()
andend() methods returning reasonatiieent instances. In fact, it is even possible
to apply sTL algorithms, such akor _each() or count _i f (), to local traces. Not to
impose too many restrictions on the underlying data strectue have refrained from
providing event access by index. However, our experienggessts that iterator func-
tionality in combination with traversal of pointer attrites is sufficient to implement
complex applications such as a parallel trace analyzer.

In addition to the iterator functionality, instances of theent class also provide
pointer attributes for more sophisticated navigationgasls a result of the parallel in-
memory event storage, pointer attributes can now also faintard, but no longer to
remote events. Currently, there are pointer attributededotify the enter and exit events
of the enclosing region instance. These can be used to detethe duration of the
communication operation (i.e., region instance) belogdma given communication
event. The return values of these pointer attribute methoglalways nevievent (i.e.,
iterator) objects that can be subject to further navigatiparations. Local call stacks



are easily calculated on the fly by traversing the chain ohtaoiattributes. Another
special attribute identifies the call path of an event by jatilg a pointer into the global
call tree. In this wayPEARL applications can easily identify events with equivaleriit ca
paths, a feature used to automatically associate bottteneith the call paths causing
them. However, in contrast to the serial version, all otHebal states and pointers
now have to be established on the application level usingikat exchange operations
discussed below.

4.5 Exchanging Event Data between Processes

To facilitate inter-process analysis of communicatiortgrats,PEARL provides means
to conveniently exchange one or more events between pexeRsmote events re-
ceived from other processes are represented by aRéasseEvent , which provides
a public interface very similar to the claBgent, but without iterator semantics and
pointer attributes, since we do not have full access to timote event trace.

There are generally two modes of exchanging events: poiptint and collective.
Point-to-point exchange allowsRenot eEvent instance to be created with arguments
specifying the source process, a communicator, and a mesaggIn addition, the
corresponding source process has to invoke a send methbe totalEvent object to
be transferred.

Moreover, the exchange of multiple events can be accongish one batch by
first collecting local events in an object of the cl&ssnt Set on the sender’s side and
instantiating an object of clag&not eEvent Set on the receiver’s side by supplying
message parameters to the constructor. Each event stdtesbinsets is identified by a
numeric identifier which can be used to assign a role to itef@mple, to distinguish
a particular constituent of a pattern. However, both setsea are able to transparently
handle multiple role identifiers for one and the same evermvtid sending its data
twice.

Unlike point-to-point communication, the collective evexchange provided by
PEARL has the form of a reduction operation that identifies theestrbr latest event
(i.e., minimum or maximum operation based on the timestanmpgarticipating pro-
cesses’ locakvent Set s, and creates a corresponding instance of d¢tasst eEvent
for those processes.

5 Example: Scalable Parallel Trace Analysis

The strength of our sequential interfaeerRL has been the provision of truly parallel
abstractions that allows access to higher-level strusf@wch as messages and collec-
tive operations, which requires the ability to match cqumesling events across several
processes. In the case of our new parallel interface, thiwie difficult, since matching
those events incurs costly communication. To minimize ¢tbismunication overhead,
the intended usage eEARL is that of areplay-based analysis. This approach has been
successfully utilized to implement a parallel trace-bagedormance analyzer func-
tionally almost equivalent to thepi-1 part of the aforementioned serial trace analyzer
EXPERT.
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Figure 1. Comparison of old and new approaches: (a) lllustration eLtte Sender pattern. (b)

In a sequentiaEARL-based analyzer, the detection of thate Sender pattern is triggered by a
receive event. All other relevant events are found througihtpr attributes. (c) In the parallel, i.e.,
PEARL-based approach, dvent Set is created whenever a send event is found by an analysis
process. This send event and the associated enter and exis ere added to the set. This set
is then sent to the corresponding receiver, which in turtaimsates eRenot eEvent Set when

the corresponding receive event is reached. Now the recepriocess has access to all relevant
constituents and can therefore verify the existence oL tihe Sender pattern.

The central idea behind a replay-based analysis is to ama&lgeh communication
operation using an operation of similar type, that is, byretructing the original com-
munication behavior of the target application currentlgemninvestigation. For exam-
ple, to analyze a message transfer in point-to-point mdaerdlated event data is also
exchanged using a single point-to-point operation.

To accomplish the analysis, the new analyzer is executed omeaycPus as used
by the target application — assuming a one-to-one mappitwgees analysis and ap-
plication processes. That is, for every process of the tapgplication, one analysis
process responsible for the trace data of this applicationgss is created. Using a
one-to-one mapping, the analysis can be efficiently canigdmmediately after trace
generation as part of the same job. In the future, howeveplamrto relax this model
and allow a smaller number of analysis processes which rbigliseful if the analysis
should be performed on a different system.

As a first step, each process of the analyzer instantia@stzl Def s as well as
alocal Trace object, thereby loading the corresponding trace data irgim mmemory.
Next, they traverse their local traces in parallel usingtidtor functionality provided
by thelLocal Trace andEvent classes and meet at the synchronization points of the
target application by replaying the original communicatiBor this purpose we use the



event data exchange abstractions described in Sectio®desFigure 1 for an exem-
plary illustration of how this principle works for tHeate Sender pattern.

Since thePEARL library provides performance-transparent access to altswof a
local trace, the analysis is no longer restricted to a puredad analysis. That i®EARL
offers the possibility to not only exchange the data of a camication event (and
potentially also the enter event of the surrounding fumctiall accessible via a pointer
attribute), but also the data of the corresponding exit eweany other event occurring
in the “future”. Our current prototype implementation oétparallel analyzer does not
yet take advantage of this fact, but this is likely to chanmgsubsequent versions.

Using the replay-based analysis approach implementedrgitirL, we were able
to analyze execution traces of a parallel-tree applicatidiedPEPG B running on 1,024
cpus and theascl benchmarksmG2000 running on up to 16,384Pus. Thereby, the
largest data set consisted of more than 40 billion eventg;hndimounted to approx-
imately 230 GBytes of disk space. By contrast, sequentatiglyzing such a huge
amount of data using amARL-based analyzer was impractical. A more elaborate dis-
cussion of the parallel analyzer and the experimentaltesah be found in [15].

6 Conclusion and Future Work

This paper presented the design of a new parallel trace de¢aslibrary calledEARL.
Instead of using a single and potentially large global tfdeeas was the case for our
previous serial approach, the new library operates on pielirocess-local trace files.
This allows effective exploitation of the distributed memypand processing capabilities
of modern supercomputing systems for parallel trace-amabigorithms and tools.

The library offers basic functionality to easily accessraveace data, following
well-known design principles. Because of the distributathdstorage scheme, the en-
tire event trace is held in main memory, thus yielding parfance-transparent access
to individual events. In addition, the interface provideg@bal view of static program
entities referenced by the events, such as code regionsnunuoaicators, and of the
call tree. Compared to its serial predecessgrL, PEARL'S storage scheme and usage
model allows pointer attributes to point forward in time,ielhgives tool builders more
flexibility in recognizing event patterns. On the other harEARL no longer offers
global abstractions, such as pointer attributes pointingther processes or execution
state. These have been replaced by mechanisms to convemirchange events be-
tween processes that, when used in conjunction with theegirod parallel reply, can
provide almost equivalent but significantly more scalabdee-analysis functionality.
Moreover, the basic design of the library offers the optibsalecting between differ-
ent trace data structures when the library is compiled. iBxdbntext, we are planning
to fully implement support for the tree-basetias data structure and to explore its use
for automatic performance analysis.

As an example of a parallel trace analysis application baseitiePEARL library,
we have outlined some details of our current prototype imletation of a scalable
performance analyzer. The analyzer and the underlyizxrL library at present focus
only onmpPI-1 applications, however, we intend to extend them to supgiber parallel
programming paradigms, such &&1-2 and Openp. Finally, we plan to exploit the



advantages of efficient event access to implement more stigated patterns that are
impractical to recognize within the serighrRL framework.
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