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Abstract Automatic trace analysis is an effective method of identifying complex
performance phenomena in parallel applications. To simplify the development of
complex trace-analysis algorithms, theEARL library interface offers high-level
access to individual events contained in a global trace file.However, as the size
of parallel systems grows further and the number of processors used by individual
applications is continuously raised, the traditional approach of analyzing a single
global trace file becomes increasingly constrained by the large number of events.
To enable scalable trace analysis, we present a new design ofthe aforementioned
EARL interface that accesses multiple local trace files in parallel while offering
means to conveniently exchange events between processes. This article describes
the modified view of the trace data as well as related programming abstractions
provided by the newPEARL library interface and discusses its application in per-
formance analysis.

1 Introduction

Event tracing is a well-accepted technique for post-mortemperformance analysis of
parallel applications. Time-stamped events, such as entering a function or sending a
message, are recorded at runtime and analyzed afterwards with the help of software
tools. For example, graphical trace browsers, such asVAMPIR [1] or PARAVER [2],
provide a zoomable time-line display, allowing a manual, fine-grained investigation of
parallel performance behavior.

However, regarding the large amounts of data usually generated, automatic off-line
trace analyzers, such asEXPERT from the KOJAK toolset [3,4], can provide the user
with relevant information more quickly by automatically searching traces for complex
patterns of inefficient behavior and quantifying their significance. In addition to usually
being faster than a manual analysis performed using the aforementioned trace browsers,



this approach is also guaranteed to cover the entire event trace and not to miss any
pattern instances.

To simplify the analysis logic incorporated inEXPERT, it has been designed on top
of EARL [5], a high-level interface to access individual events from a single global trace
file. As opposed to a low-level interface that allows readingindividual event records
only in a sequential manner,EARL offers random access to individual events. Not to
restrict trace-file size,EARL assumes access locality allowing it to buffer the context
of recent accesses in main memory while reading events outside this context from file.
In addition, to support the identification of pattern constituents,EARL provides a set
of abstractions representing execution state informationat the time of a given event as
well as links between related events, such as correspondingenter and exit events for
function instances.

Unfortunately, sequentially analyzing a single and potentially large global trace file
does not scale well to applications running on thousands of processors. Even if access
locality is exploited as described above, the amount of mainmemory might not be
sufficient to store the current working set of events. In addition, the preceeding step of
merging local event trace data generated by individual processes into a global trace file
is very time-consuming. Moreover, the amount of trace data might not even fit into a
single file, which already suggests to perform the analysis in a more distributed fashion.

To enable scalable trace analysis for modern large-scale systems and applications
running on them, we have designed a parallel trace-data interfacePEARL as a building
block for parallel trace analysis algorithms and tools. In this article, we describe the
modified view of the trace data in combination with programming abstractions repre-
senting this view. We start our discussion with a review of related work in Section 2,
followed by a description of the serial interface in Section3. In Section 4, we detail
the programming abstractions offered by the new parallel interface, before presenting
the intended usage as a framework for implementing automatic parallel trace analysis
in Section 5. Finally, we conclude the paper and outline somefurther improvements in
Section 6.

2 Related Work

In [6], Wolf et al. review a number of approaches addressing scalable trace analysis.
The frame-basedSLOG trace-data format [7] supports scalable visualization, whereas
dynamic periodicity detection in OpenMP applications [8] prevents redundant perfor-
mance behavior from being recorded in the first place. Important to our approach has
been the distributed trace analysis and visualization toolVAMPIR Server [9], which
already provides parallel trace access mechanisms, albeittargeting a “serial” human
client in front of a graphical trace browser as opposed to fully automatic and parallel
trace analysis. Miller et al. have used a distributed algorithm on multiple local trace data
sets [10] to calculate the critical path, which identifies parts of the program responsible
for its length of execution.

Unlike common linear storage schemes for event trace data, the tree-based main
memory data structure called cCCG [11] allows potentially lossy compression of trace
data while observing previously specified deviation bounds. Since we are considering



to use cCCGs as an alternate base data structure for our trace-data interface, the parallel
programming abstractions described in this paper are designed in such a way that the
underlying data structure can be easily changed when the library is compiled.

3 Serial Programming Interface: EARL

EARL (Event Analysis and Recognition Library) is a C++ class library that offers a
high-level interface to access event traces ofMPI, OpenMP, or SHMEM applications. In
the context ofEARL, an event trace is stored in a single global trace file that includes
events from all processes or threads in chronological order. The user is given random
access to individual events allowing the retrieval of distinct events by their index within
the chronologically sorted sequence. Loops iterating overthe entire trace can be easily
implemented by querying the total number of events beforehand.

In addition,EARL provides execution state information at the time of a given event
in the form of event sets describing a particular aspect of this state. The state being
calculated is either local or global. Local state always refers to a single process or
thread, whereas global state may encompass multiple processes or threads. Local state
information provided byEARL includes the call stack in form of the enter events of
currently active region instances; global state information includes the set of messages
currently in transit represented by their respective send events, completed collective
operations represented by their respective exit events, and the global call tree derived
from the different call stacks, as it evolves over time. Based on this state information,
EARL also provides links between related events, which are called pointer attributes.
Pointer attributes can also be divided into local and globalattributes. There is one local
attribute pointing to the enter event of the currently active region instance and allowing
traversal of the call stack. Several global attributes support functions, such as locating
the send event corresponding to a given receive event, uniquely identifying call paths,
traversing the global call tree, or following the ownershiphistory of OpenMP locks
between threads.

The intended trace analysis process supported byEARL is a sequential traversal of
the event trace from beginning to end. As the analysis progresses,EARL updates the
execution-state information and calculates pointer attributes for the most recent event
being read, which always point backwards to avoid a costly look-ahead. To make the
trace analysis process more efficient,EARL buffers the context of the current event so
that events within this context can be directly accessed from main memory. This context
includes the lastn events (i.e., the history), including the entire related execution-state
information.

To avoid re-reading the trace file from the very beginning in cases where an event
outside the context is requested,EARL additionally stores the complete execution state
information at regular intervals in so-called bookmarks. The history size as well as the
bookmark distance can be flexibly configured, however, sincethese parameters have a
significant performance impact with respect to memory consumption and the number
of required file accesses and, in addition, these effects arehighly application dependent,
finding an optimal set of parameters is a non-trivial task. For more details aboutEARL,
the interested reader may refer to the user manual [12].



4 Parallel Access to Trace Data:PEARL

In this section, our new parallel programming interface foraccessing event trace data
is presented. Before going into the details of the programming abstractions provided,
we start with an outline of the overall design and show how it differs from the previous
approach described above.

4.1 Design Overview

Similar to EARL, our new parallel trace data access interface, which we callPEARL, is
also implemented as a C++ class library. However, we no longer assume a single global
trace file, as was the case for the serial interface. Instead,PEARL operates on multiple
process-local trace files.

For simplicity, our initial implementation of thePEARL library focuses only on
single-threadedMPI-1 applications. However, during the entire design it was taken into
account that we plan to extend this approach to alternate parallel programming models,
such as OpenMP or MPI-2. Therefore, thePEARL library interface is subdivided into a
generic part, which is independent of the programming modelused, and anMPI-specific
part, implemented by deriving specialized subclasses fromthe generic interface. Once
support for multi-threaded applications has been added,PEARL will access one local
trace file per thread.

The benefit behind the approach of using multiple local tracefiles instead of a single
global file is twofold. First, it avoids the time-consuming step of merging the process-
local trace files generated by the measurement system into a single global file. And
second, it allows us to effectively exploit the distributedmemory and parallel process-
ing capabilities available on modern supercomputer systems. As a consequence, the
analysis algorithms and tools based onPEARL will usually be parallel applications in
their own right with expected scalability improvements compared to serial versions.

The originally envisaged usage model ofPEARL assumes a one-to-one mapping
between analysis and target-application processes. That is, for every process of the tar-
get application, one analysis process responsible for the trace data of this application
process is created. However, thePEARL library itself imposes no restrictions on how
many traces can be handled by a single analysis process, as long as sufficient system
resources (especially memory) are available. It is even possible to implement sequential
tools based onPEARL, processing the local traces one after another.

The trace data is exposed to the user through two fundamentalclasses, namely
GlobalDefs andLocalTrace. Before describing both classes in more detail, the re-
quired organization of trace files and how it is established are explained.

4.2 Trace File Organization

To generate trace data suitable forPEARL, we have modified the originalKOJAK mea-
surement system. An essential change has been omitting the merge step and storing
event data and the definitions of entities referenced by events in separate types of files,
which correspond to the classesGlobalDefs andLocalTrace mentioned above.



Event data stored in trace files refer to static program entities, such as the code
regions entered or left. However, to avoid redundancy and save storage space, event
records contain only identifiers referencing these entities and the identifiers are defined
separately. During measurement each process assigns localidentifiers to these entities,
and subsequently uses these local identifiers in event records whenever the correspond-
ing entities are referenced.

Immediately after program execution, the measurement system unifies the local def-
initions and generates a single global definitions file, where each entity is assigned a
global identifier. In addition, to allow the conversion of local into global identifiers,
the measurement system creates one mapping table per process. In this way, the actual
event files, which still contain local identifiers, need not be rewritten and costlyI /O can
be avoided. This unification step was previously performed using a separate executable,
but has recently been fully integrated it into the measurement system itself. A more
comprehensive description of these mechanisms can be foundin [13].

4.3 Accessing Global Definitions

In the context of thePEARL library interface, information about static program entities
that can be shared between all processes or threads of a parallel trace analysis tool is
represented by the classGlobalDefs. That is, every process has to create a single in-
stance of this class for each experiment it analyzes, which on instantiation reads the
corresponding global definitions file generated by the measurement system. All pro-
cesses read the same file, because they share the same set of global definitions.

TheGlobalDefs instance provides the user with details regarding the hierarchical
structure of the computer system used during trace file generation, consisting of ma-
chine, node, process, and thread descriptions as well as their relationships, such as the
topological distribution (either from a logical point of view or with respect to the hard-
ware). In addition, it offers ways to query information on groups of locations in the
system hierarchy (i.e., threads or processes), which are, for instance, used to specify
MPI communicators.

Moreover, theGlobalDefs object stores the details of instrumented code regions
and call sites, as well as the global call tree of the application that is currently analyzed.
This global call tree will be generated by the measurement system at the end of exe-
cution of the target application and stored in the global definitions file. Alternatively,
the PEARL library provides functionality to reconstruct the global call tree during the
trace analysis as an optional preprocessing step. However,this reconstruction can not
be performed before the entire event-trace data has been loaded into memory. Note that
different fromEARL, the call tree is no longer defined in terms of links between indi-
vidual events (i.e., pointer attributes), but in a separatedata structure which simplifies
the handling of call-path information.

4.4 Accessing Event Data

In addition to theGlobalDefs object, each analysis process (or thread in case of multi-
threaded applications) has access to one local event trace represented by an instance
of the classLocalTrace. Since we assume that the internal in-memory representation



of a local trace is smaller than the memory available to a single process on a parallel
machine, the entire local trace can be kept in main memory, relaxing the aforementioned
limitations resulting from strict forward analysis. In other words, thePEARL library can
provide performance-transparent access to individual events plus local execution state
information.

To make sure that our assumption of being able to keep the entire trace data in mem-
ory is not too restrictive for the future, theLocalTrace interface provided byPEARL is
designed in such a way that it allows to select between different underlying trace data
structures, which can be chosen when the library is compiled. At present,PEARL offers
(i) a linear list with full functionality and (ii) rudimental support for cCCG graphs. The
latter option will be extended and further investigated. Tosupport very long traces, it
would even be possible to add anEARL-like backend using a sliding-window approach
and sophisticated buffering mechanisms.

While reading the event trace into memory, theLocalTrace object automatically
performs two important operations: First, it corrects the timestamps of the individual
events using linear interpolation to – at least partially – compensate for unsynchronized
clocks. And second, it “globalizes” all identifiers used in the trace file by creating refer-
ences to the corresponding static program entities provided by the singleGlobalDefs
instance, using the per-process mapping tables mentioned in Section 4.2. That is, the
event objects created from the event records provide pointers into the same set of ob-
jects. After these on-the-fly transformations, which are completely transparent to the
user, the instances of classLocalTrace provide a unified view of the event data with
respect to timestamps and references to global definition objects. This is especially use-
ful when exchanging event data between processes, as described in Section 4.5.

Individual events of local traces can be accessed through the Event class which
provides access to all possible event attributes, following theComposite design pattern
[14]. For navigating through the local trace, this class also exposesIterator semantics
available via simpleoperator--() andoperator++() methods. With respect to the it-
erator functionality, the two classesLocalTrace andEvent provide an interface that is
very similar to that of the C++ Standard Template Library (STL) container classes and
their corresponding iterators. For example, theLocalTrace class providesbegin()
andend() methods returning reasonableEvent instances. In fact, it is even possible
to applySTL algorithms, such asfor each() or count if(), to local traces. Not to
impose too many restrictions on the underlying data structure, we have refrained from
providing event access by index. However, our experience suggests that iterator func-
tionality in combination with traversal of pointer attributes is sufficient to implement
complex applications such as a parallel trace analyzer.

In addition to the iterator functionality, instances of theEvent class also provide
pointer attributes for more sophisticated navigation tasks. As a result of the parallel in-
memory event storage, pointer attributes can now also pointforward, but no longer to
remote events. Currently, there are pointer attributes to identify the enter and exit events
of the enclosing region instance. These can be used to determine the duration of the
communication operation (i.e., region instance) belonging to a given communication
event. The return values of these pointer attribute methodsare always newEvent (i.e.,
iterator) objects that can be subject to further navigationoperations. Local call stacks



are easily calculated on the fly by traversing the chain of pointer attributes. Another
special attribute identifies the call path of an event by providing a pointer into the global
call tree. In this way,PEARL applications can easily identify events with equivalent call
paths, a feature used to automatically associate bottlenecks with the call paths causing
them. However, in contrast to the serial version, all other global states and pointers
now have to be established on the application level using theevent exchange operations
discussed below.

4.5 Exchanging Event Data between Processes

To facilitate inter-process analysis of communication patterns,PEARL provides means
to conveniently exchange one or more events between processes. Remote events re-
ceived from other processes are represented by a classRemoteEvent, which provides
a public interface very similar to the classEvent, but without iterator semantics and
pointer attributes, since we do not have full access to the remote event trace.

There are generally two modes of exchanging events: point-to-point and collective.
Point-to-point exchange allows aRemoteEvent instance to be created with arguments
specifying the source process, a communicator, and a message tag. In addition, the
corresponding source process has to invoke a send method on the localEvent object to
be transferred.

Moreover, the exchange of multiple events can be accomplished in one batch by
first collecting local events in an object of the classEventSet on the sender’s side and
instantiating an object of classRemoteEventSet on the receiver’s side by supplying
message parameters to the constructor. Each event stored inthese sets is identified by a
numeric identifier which can be used to assign a role to it, forexample, to distinguish
a particular constituent of a pattern. However, both set classes are able to transparently
handle multiple role identifiers for one and the same event toavoid sending its data
twice.

Unlike point-to-point communication, the collective event exchange provided by
PEARL has the form of a reduction operation that identifies the earliest or latest event
(i.e., minimum or maximum operation based on the timestamps) in participating pro-
cesses’ localEventSets, and creates a corresponding instance of classRemoteEvent
for those processes.

5 Example: Scalable Parallel Trace Analysis

The strength of our sequential interfaceEARL has been the provision of truly parallel
abstractions that allows access to higher-level structures, such as messages and collec-
tive operations, which requires the ability to match corresponding events across several
processes. In the case of our new parallel interface, this ismore difficult, since matching
those events incurs costly communication. To minimize thiscommunication overhead,
the intended usage ofPEARL is that of areplay-based analysis. This approach has been
successfully utilized to implement a parallel trace-basedperformance analyzer func-
tionally almost equivalent to theMPI-1 part of the aforementioned serial trace analyzer
EXPERT.
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Figure 1. Comparison of old and new approaches: (a) Illustration of the Late Sender pattern. (b)
In a sequentialEARL-based analyzer, the detection of theLate Sender pattern is triggered by a
receive event. All other relevant events are found through pointer attributes. (c) In the parallel, i.e.,
PEARL-based approach, anEventSet is created whenever a send event is found by an analysis
process. This send event and the associated enter and exit events are added to the set. This set
is then sent to the corresponding receiver, which in turn instantiates aRemoteEventSet when
the corresponding receive event is reached. Now the receiving process has access to all relevant
constituents and can therefore verify the existence of theLate Sender pattern.

The central idea behind a replay-based analysis is to analyze each communication
operation using an operation of similar type, that is, by reconstructing the original com-
munication behavior of the target application currently under investigation. For exam-
ple, to analyze a message transfer in point-to-point mode, the related event data is also
exchanged using a single point-to-point operation.

To accomplish the analysis, the new analyzer is executed on as manyCPUs as used
by the target application – assuming a one-to-one mapping between analysis and ap-
plication processes. That is, for every process of the target application, one analysis
process responsible for the trace data of this application process is created. Using a
one-to-one mapping, the analysis can be efficiently carriedout immediately after trace
generation as part of the same job. In the future, however, weplan to relax this model
and allow a smaller number of analysis processes which mightbe useful if the analysis
should be performed on a different system.

As a first step, each process of the analyzer instantiates aGlobalDefs as well as
aLocalTrace object, thereby loading the corresponding trace data into main memory.
Next, they traverse their local traces in parallel using theiterator functionality provided
by theLocalTrace andEvent classes and meet at the synchronization points of the
target application by replaying the original communication. For this purpose we use the



event data exchange abstractions described in Section 4.5.See Figure 1 for an exem-
plary illustration of how this principle works for theLate Sender pattern.

Since thePEARL library provides performance-transparent access to all events of a
local trace, the analysis is no longer restricted to a pure forward analysis. That is,PEARL

offers the possibility to not only exchange the data of a communication event (and
potentially also the enter event of the surrounding function call accessible via a pointer
attribute), but also the data of the corresponding exit event or any other event occurring
in the “future”. Our current prototype implementation of the parallel analyzer does not
yet take advantage of this fact, but this is likely to change in subsequent versions.

Using the replay-based analysis approach implemented withPEARL, we were able
to analyze execution traces of a parallel-tree applicationcalledPEPC-B running on 1,024
CPUs and theASCI benchmarkSMG2000 running on up to 16,384CPUs. Thereby, the
largest data set consisted of more than 40 billion events, which amounted to approx-
imately 230 GBytes of disk space. By contrast, sequentiallyanalyzing such a huge
amount of data using anEARL-based analyzer was impractical. A more elaborate dis-
cussion of the parallel analyzer and the experimental results can be found in [15].

6 Conclusion and Future Work

This paper presented the design of a new parallel trace data access library calledPEARL.
Instead of using a single and potentially large global tracefile, as was the case for our
previous serial approach, the new library operates on multiple process-local trace files.
This allows effective exploitation of the distributed memory and processing capabilities
of modern supercomputing systems for parallel trace-analysis algorithms and tools.

The library offers basic functionality to easily access event-trace data, following
well-known design principles. Because of the distributed data storage scheme, the en-
tire event trace is held in main memory, thus yielding performance-transparent access
to individual events. In addition, the interface provides aglobal view of static program
entities referenced by the events, such as code regions or communicators, and of the
call tree. Compared to its serial predecessorEARL, PEARL’s storage scheme and usage
model allows pointer attributes to point forward in time, which gives tool builders more
flexibility in recognizing event patterns. On the other hand, PEARL no longer offers
global abstractions, such as pointer attributes pointing to other processes or execution
state. These have been replaced by mechanisms to conveniently exchange events be-
tween processes that, when used in conjunction with the concept of parallel reply, can
provide almost equivalent but significantly more scalable trace-analysis functionality.
Moreover, the basic design of the library offers the option of selecting between differ-
ent trace data structures when the library is compiled. In this context, we are planning
to fully implement support for the tree-based cCCG data structure and to explore its use
for automatic performance analysis.

As an example of a parallel trace analysis application basedon thePEARL library,
we have outlined some details of our current prototype implementation of a scalable
performance analyzer. The analyzer and the underlyingPEARL library at present focus
only onMPI-1 applications, however, we intend to extend them to support other parallel
programming paradigms, such asMPI-2 and OpenMP. Finally, we plan to exploit the



advantages of efficient event access to implement more sophisticated patterns that are
impractical to recognize within the serialEARL framework.
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