
Issue date: April 2025

Laboratory for Parallel Programming
Bachelor’s / Master’s Thesis

Can LLMs Understand Program Logic?

Motivation
Large Language Models (LLMs) have emerged as candida-
te tools to tackle the automatic parallelization of source
code as well as the generation of parallel code to solve a
specific task at hand. While recent publications have shown
promising results for this application of LLMs using various
benchmark codes, the question whether they truly com-
prehend a programs logic or simply parrot what they have
learned remains mostly uncovered. Although a potential
parroting of learned examples could yield good results for
small and simple problems, it is conceivable that it may fail
if the complexity of the code or problem at hand increases
due to inherent, characteristic problems of parallel pro-
grams such as data races. To obtain a better understanding
of the capabilities of modern LLMs, it is crucial to answer
the question mentioned above.

Illustration of exemplary code generation tasks to be
examined.

Task
As a first step towards answering the general question, we will focus on the parallelization of sequential code. In this context,
we will consider the knowledge of a programs control flow combined with the inherent data dependencies as a proxy for
the programs logic. Your first task will be to conceive and develop approaches and benchmarks to assess the underlying
understanding of program logic used by LLMs during the parallelization of sequential source code. One potential, exemplary
approach could be to use chain-of-thought prompting to obtain insights into the program logic considered during the decision
processes and compare these to the gathered information from an observed program execution via the DiscoPoP framework.
Secondly, you will assess the boundaries of the LLMs capabilities and explore code features and characteristics that are
beneficial/detrimental to the LLMs understanding of the program logic and, thus, their result quality in the parallelization
use case.

Requirements
• Python, C/C++, (Clang/LLVM might be helpful, but not required)

Contact
Lukas Rothenberger <lukas.rothenberger@tu-darmstadt.de>

References
1. Daniel Nichols, Joshua H. Davis, Zhaojun Xie, Arjun Rajaram, and Abhinav Bhatele. Can Large Language Models Write

Parallel Code? Association for Computing Machinery, New York, USA, 2024

2. DiscoPoP - Discovery of Potential Parallelism, github.com/discopop-project/discopop, Laboratory for Parallel Program-
ming, TU Darmstadt


